[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An algorithm for constructing detaching bases in the ring of polynomials over a field

  • Algorithms 2 — Polynomial Ideal Bases
  • Conference paper
  • First Online:
Computer Algebra (EUROCAL 1983)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 162))

Included in the following conference series:

  • 156 Accesses

Abstract

Most ideal theoretic problems in a polynomial ring are extremely hard to solve, if the ideal is given by an arbitrary basis. B. Buchberger, 1965, was the first to show that for polynomials over a field it is possible to construct a "detaching" basis from a given arbitrary one, such that the problems mentioned above become easily soluble. Other authors (e.g. M. Lauer, 1976, and S.C. Schaller, 1979) have considered different coefficient domains. In this paper we investigate a method, developed by C.Sims and C.Ayoub, for constructing "detaching" bases in the ring of polynomials over Z, where the power products are ordered lexicographically. We show that the method also works for polynomials over a field, with only weak conditions on the ordering of the power products. New proofs of correctness and termination are presented. Furthermore we are able to improve the complexity behaviour of Ayoub's algorithm for the case of polynomials over a field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C.Ayoub: On Constructing Bases for Ideals in Polynomial Rings over the Integers, Research Report, Dept.Math., Pennsylvania State Univ., 1980

    Google Scholar 

  2. B. Buchberger: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. Dissertation, Univ. Innsbruck, 1965

    Google Scholar 

  3. B. Buchberger: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequ.math., vol.4/3, pp.374–383, 1970

    Google Scholar 

  4. B. Buchberger: A Theoretical Basis for the Reduction of Polynomials to Canonical Forms, ACM SIGSAM Bull. 39, pp.19–29, Aug.1976

    Google Scholar 

  5. B.Buchberger: A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner-Bases, Proc. EUROSAM'79, pp.3–21, June 1979

    Google Scholar 

  6. B.Buchberger, F.Winkler: Miscellaneous Results on the Construction of Gröbner-Bases for Polynomial Ideals, Techn.Rep. Nr. 137, Inst. f. Math., Univ. Linz, June 1979

    Google Scholar 

  7. M.Lauer: Canonical Representatives for Residue Classes of a Polynomial Ideal, Proc. 1976 ACM Symp. on Symbolic and Algebraic Computation, pp.339–345, Aug.1976

    Google Scholar 

  8. M. Lauer: Kanonische Repräsentanten für die Restklassen nach einem Polynomideal, Diplomarbeit, Univ. Kaiserslautern, 1976

    Google Scholar 

  9. S.C.Schaller: Algorithmic Aspects of Polynomial Residue Class Rings, Ph.D. Dissertation, Univ. Wisconsin-Madison, 1979

    Google Scholar 

  10. C.Sims: The Role of Algorithms in the Teaching of Algebra, in: M.F. Newman (ed.): Topics in Algebra, Springer Lecture Notes in Math., Nr.697, pp.95–107, 1978

    Google Scholar 

  11. B.L. van der Waerden: Modern Algebra, vol.2, New York, Ungar, 1970

    Google Scholar 

  12. F.Winkler: Implementierung eines Algorithmus zur Konstruktion von Gröbner-Basen, Diplomarbeit, Univ. Linz, 1978

    Google Scholar 

  13. F.Winkler: An Algorithm for Constructing Detaching Bases in the Ring of Polynomials over a Field, Techn.Rep. Nr. CAMP 82-20.0, Inst. f. Math., Univ. Linz, December 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. A. van Hulzen

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Winkler, F. (1983). An algorithm for constructing detaching bases in the ring of polynomials over a field. In: van Hulzen, J.A. (eds) Computer Algebra. EUROCAL 1983. Lecture Notes in Computer Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12868-9_101

Download citation

  • DOI: https://doi.org/10.1007/3-540-12868-9_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12868-7

  • Online ISBN: 978-3-540-38756-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics