Abstract
Most ideal theoretic problems in a polynomial ring are extremely hard to solve, if the ideal is given by an arbitrary basis. B. Buchberger, 1965, was the first to show that for polynomials over a field it is possible to construct a "detaching" basis from a given arbitrary one, such that the problems mentioned above become easily soluble. Other authors (e.g. M. Lauer, 1976, and S.C. Schaller, 1979) have considered different coefficient domains. In this paper we investigate a method, developed by C.Sims and C.Ayoub, for constructing "detaching" bases in the ring of polynomials over Z, where the power products are ordered lexicographically. We show that the method also works for polynomials over a field, with only weak conditions on the ordering of the power products. New proofs of correctness and termination are presented. Furthermore we are able to improve the complexity behaviour of Ayoub's algorithm for the case of polynomials over a field.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C.Ayoub: On Constructing Bases for Ideals in Polynomial Rings over the Integers, Research Report, Dept.Math., Pennsylvania State Univ., 1980
B. Buchberger: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. Dissertation, Univ. Innsbruck, 1965
B. Buchberger: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequ.math., vol.4/3, pp.374–383, 1970
B. Buchberger: A Theoretical Basis for the Reduction of Polynomials to Canonical Forms, ACM SIGSAM Bull. 39, pp.19–29, Aug.1976
B.Buchberger: A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner-Bases, Proc. EUROSAM'79, pp.3–21, June 1979
B.Buchberger, F.Winkler: Miscellaneous Results on the Construction of Gröbner-Bases for Polynomial Ideals, Techn.Rep. Nr. 137, Inst. f. Math., Univ. Linz, June 1979
M.Lauer: Canonical Representatives for Residue Classes of a Polynomial Ideal, Proc. 1976 ACM Symp. on Symbolic and Algebraic Computation, pp.339–345, Aug.1976
M. Lauer: Kanonische Repräsentanten für die Restklassen nach einem Polynomideal, Diplomarbeit, Univ. Kaiserslautern, 1976
S.C.Schaller: Algorithmic Aspects of Polynomial Residue Class Rings, Ph.D. Dissertation, Univ. Wisconsin-Madison, 1979
C.Sims: The Role of Algorithms in the Teaching of Algebra, in: M.F. Newman (ed.): Topics in Algebra, Springer Lecture Notes in Math., Nr.697, pp.95–107, 1978
B.L. van der Waerden: Modern Algebra, vol.2, New York, Ungar, 1970
F.Winkler: Implementierung eines Algorithmus zur Konstruktion von Gröbner-Basen, Diplomarbeit, Univ. Linz, 1978
F.Winkler: An Algorithm for Constructing Detaching Bases in the Ring of Polynomials over a Field, Techn.Rep. Nr. CAMP 82-20.0, Inst. f. Math., Univ. Linz, December 1982
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1983 Springer-Verlag
About this paper
Cite this paper
Winkler, F. (1983). An algorithm for constructing detaching bases in the ring of polynomials over a field. In: van Hulzen, J.A. (eds) Computer Algebra. EUROCAL 1983. Lecture Notes in Computer Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12868-9_101
Download citation
DOI: https://doi.org/10.1007/3-540-12868-9_101
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-12868-7
Online ISBN: 978-3-540-38756-5
eBook Packages: Springer Book Archive