Preview
Unable to display preview. Download preview PDF.
References
D.A. Bayer. The division algorithm and the Hilbert scheme, Ph D, Harward Univ., 1982.
B. Buchberger. Ein algorithmishes Kriterium fur die Lösbarkeit eines algebraischen Gleischungsystem. Aequationes Matematicea 4 (1970), p. 374–383.
B. Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner bases, EUROSAM'79, Lect. Notes in Comp. Sc. no 72 (1979), p. 3–21.
B. Buchberger. A note on the complexity of constructing Gröbner bases. These proceedings.
I. Kaplansky. Commutative rings. Allyn and Bacon (Boston, 1970).
D. Lazard. Algèbre linéaire sur K[X1,...,Xn] et élimination. Bull. Soc. Math. France 105 (1977), p. 165–190.
D. Lazard. Systems of algebraic equations. EUROSAM 79, p. 88–94.
D. Lazard. Résolution des systèmes d'équations algébriques. Theor. Comp. Sciences 15 (1981), p. 77–110.
D. Lazard. Commutative Algebra and Computer Algebra, EUROCAM'82, Lect. Notes in Comp. Sc. no 144 (1982), p. 40–48.
F. Mora. An algorithm to compute the equations of tangent cones, EUROCAM'82, p. 158–165.
M. Pohst, D.Y.Y. Yun. On solving systems of algebraic equations via ideal bases and elimination theory SYMSAC 1981, p. 206–211.
W. Trinks, Ueber B. Buchberger Verfahren, Systeme algebraischer Gleischungen zu lösen, J. of Number Theory 10 (1978), p. 475–488.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1983 Springer-Verlag
About this paper
Cite this paper
Lazard, D. (1983). Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (eds) Computer Algebra. EUROCAL 1983. Lecture Notes in Computer Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12868-9_99
Download citation
DOI: https://doi.org/10.1007/3-540-12868-9_99
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-12868-7
Online ISBN: 978-3-540-38756-5
eBook Packages: Springer Book Archive