[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations

  • Algorithms 2 — Polynomial Ideal Bases
  • Conference paper
  • First Online:
Computer Algebra (EUROCAL 1983)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 162))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Bayer. The division algorithm and the Hilbert scheme, Ph D, Harward Univ., 1982.

    Google Scholar 

  2. B. Buchberger. Ein algorithmishes Kriterium fur die Lösbarkeit eines algebraischen Gleischungsystem. Aequationes Matematicea 4 (1970), p. 374–383.

    Google Scholar 

  3. B. Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner bases, EUROSAM'79, Lect. Notes in Comp. Sc. no 72 (1979), p. 3–21.

    Google Scholar 

  4. B. Buchberger. A note on the complexity of constructing Gröbner bases. These proceedings.

    Google Scholar 

  5. I. Kaplansky. Commutative rings. Allyn and Bacon (Boston, 1970).

    Google Scholar 

  6. D. Lazard. Algèbre linéaire sur K[X1,...,Xn] et élimination. Bull. Soc. Math. France 105 (1977), p. 165–190.

    Google Scholar 

  7. D. Lazard. Systems of algebraic equations. EUROSAM 79, p. 88–94.

    Google Scholar 

  8. D. Lazard. Résolution des systèmes d'équations algébriques. Theor. Comp. Sciences 15 (1981), p. 77–110.

    Google Scholar 

  9. D. Lazard. Commutative Algebra and Computer Algebra, EUROCAM'82, Lect. Notes in Comp. Sc. no 144 (1982), p. 40–48.

    Google Scholar 

  10. F. Mora. An algorithm to compute the equations of tangent cones, EUROCAM'82, p. 158–165.

    Google Scholar 

  11. M. Pohst, D.Y.Y. Yun. On solving systems of algebraic equations via ideal bases and elimination theory SYMSAC 1981, p. 206–211.

    Google Scholar 

  12. W. Trinks, Ueber B. Buchberger Verfahren, Systeme algebraischer Gleischungen zu lösen, J. of Number Theory 10 (1978), p. 475–488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. A. van Hulzen

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Lazard, D. (1983). Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (eds) Computer Algebra. EUROCAL 1983. Lecture Notes in Computer Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12868-9_99

Download citation

  • DOI: https://doi.org/10.1007/3-540-12868-9_99

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12868-7

  • Online ISBN: 978-3-540-38756-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics