Abstract
We have obtained a number of results concerning the topological closure of infinitary relations : in practice, at least for modeling the synchronization of concurrent processes, we shall use mainly infinitary rational relations. A forthcomming paper of the same author is devoted to theim definition and properties. The author has had very helpful discussions with A. Arnold, L. Boasson, F. Boussinot, G. Roncairol and G. Ruggin.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
A. ARNOLD and M. NIVAT Metric interpretations of infinite trees and semantics of non deterministic recursive programs. Theor. Comp. Sci., Vol. 11 (1980), 181–205.
J. BEAUQUIER and M. NIVAT Application of formal language theory to problems of security and synchronization, in Formal Language Theory (R. Book, éd.) Academic Press, New York, 1980.
L. BOASSON and M. NIVAT Adherences of languages, Jour. Comp. Syst. Sci., Vol. 20 (1980), 285–309.
S. EILENBERG Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
M. NIVAT Systèmes de transition permanents et équitables, Research Report no 2577, Laboratoire Central de Recherches Thomson-CSF, Orsay, 1980.
M. NIVAT Infinitary languages (to appear).
M. NIVAT Synchronization et multimorphismes (to appear).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1981 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nivat, M. (1981). Infinitary relations. In: Astesiano, E., Böhm, C. (eds) CAAP '81. CAAP 1981. Lecture Notes in Computer Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10828-9_54
Download citation
DOI: https://doi.org/10.1007/3-540-10828-9_54
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10828-3
Online ISBN: 978-3-540-38716-9
eBook Packages: Springer Book Archive