Preview
Unable to display preview. Download preview PDF.
References
BROWN, W.S, The Subresultant PRS Algorithm, TOMS 4 (1978) 237–249
MOSES, J and YUN, D.Y.Y., The EZ GCD Algorithm, Proceedings of ACM 73 (1973) 159–166
BROWN, W.S., On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors, Journ A.C.M. 18 (1971) 478–504
COLLINS, G.E., Subresultants and reduced polynomial remainder sequences, Journ A.C.M. 14 (1967) 128–142
HEARN, A.C., An Improved Non-modular Polynomial GCD Algorithm, SIGSAM Bulletin, ACM 23, New York, (1972) 10–15
HEARN, A.C., REDUCE 2 — A System and Language for Algebraic Manipulation, Proc. of Second Symposium on Symbolic and Algebraic Manipulation, International Hotel, Los Angeles (1971) 128–133
HEARN, A.C., A Mode Analyzing Algebraic Manipulation Program, Proceedings of ACM 74, ACM, New York (1974) 722–724
GRISS, M.L., The Definition and Use of Data-Structures in REDUCE, Proc. SYMSAC 76, ACM, New York (1976) 53–59
HEARN, A.C., The Structure of Algebraic Computations, Proc. of the Fourth Colloquium on Advanced Comp. Methods in Theor. Physics, St. Maximin, France, (1977) 1–15.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1979 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hearn, A.C. (1979). Non-modular computation of polynomial GCDS using trial division. In: Ng, E.W. (eds) Symbolic and Algebraic Computation. EUROSAM 1979. Lecture Notes in Computer Science, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09519-5_74
Download citation
DOI: https://doi.org/10.1007/3-540-09519-5_74
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-09519-4
Online ISBN: 978-3-540-35128-3
eBook Packages: Springer Book Archive