[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Trace Model for Object Detection and Tracking

  • Chapter
Toward Category-Level Object Recognition

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4170))

Abstract

We introduce a stochastic model to characterize the online computational process of an object recognition system based on a hierarchy of classifiers. The model is a graphical network for the conditional distribution, under both object and background hypotheses, of the classifiers which are executed during a coarse-to-fine search. A likelihood is then assigned to each history or “trace” of processing. In this way, likelihood ratios provide a measure of confidence for each candidate detection, which markedly improves the selectivity of hierarchical search, as illustrated by pruning many false positives in a face detection experiment. This also leads to a united framework for object detection and tracking. Experiments in tracking faces in image sequences demonstrate invariance to large face movements, partial occlusions, changes in illumination and varying numbers of faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, Y.: 2D Object Detection and Recognition. MIT Press, Cambridge (2002)

    Google Scholar 

  2. Amit, Y., Geman, D., Fan, X.: A coarse-to-fine strategy for pattern recognition. IEEE Trans. PAMI 26(12), 1606–1621 (2004)

    Google Scholar 

  3. Blanchard, G., Geman, D.: Sequential testing designs for pattern recognition. Annals of Statistics 33, 155–1202 (2005)

    Article  MathSciNet  Google Scholar 

  4. Burl, M., Perona, P.: Recognition of planar object classes. In: IEEE Proc. CVPR, pp. 223–230 (1996)

    Google Scholar 

  5. Cascia, M.L., Sclaroff, S., Athitos, V.: Fast reliable head tracking under varying illumination: An approach based on registration of texture-mapped 3D models. IEEE. Trans. PAMI 21(6) (1999)

    Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Kernel based object tracking. IEEE Trans. PAMI 25, 564–577 (2003)

    Google Scholar 

  7. Decarlo, D., Metaxas, D.: Deformable model based face shape and motion estimation. In: Proc. Int’l Conf. Auto. Face and Gesture Recognition (1996)

    Google Scholar 

  8. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley and Sons, Chichester (2001)

    MATH  Google Scholar 

  9. Edwards, C.J., Taylor, C.J., Cootes, T.F.: Learning to identify and track faces in an image sequence. In: Proc. Int’l Conf. Auto. Face and Gesture Recognition, pp. 260–265 (1998)

    Google Scholar 

  10. Fleuret, F., Geman, D.: Coarse-to-fine face detection. IJCV 41, 85–107 (2001)

    Article  MATH  Google Scholar 

  11. Geman, S., Potter, D., Chi, Z.: Composition systems. Quaterly of Applied Mathematics LX, 707–736 (2002)

    MathSciNet  Google Scholar 

  12. Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. IJCV 29, 5–28 (1998)

    Article  Google Scholar 

  13. Krempp, S., Geman, D., Amit, Y.: Sequential learning with reusable parts for object detection, Technical Report, Johns Hopkins University (2002)

    Google Scholar 

  14. Li, B., Chellappa, R.: A generic approach to simultaneous tracking and verification in video. IEEE Trans. Image Processing 11, 530–544 (2002)

    Article  Google Scholar 

  15. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: Proc. IEEE CVPR, pp. 130–136 (1997)

    Google Scholar 

  16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  17. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. PAMI 20, 23–38 (1998)

    Google Scholar 

  18. Sahbi, H.: Coarse-to-fine support vector machines for hierarchical face detection. Ph.D thesis, Versailles University (2003)

    Google Scholar 

  19. Schwerdt, K., Crowley, J.: Robust face tracking using colour. In: Proc. Int’l Conf. Auto. Face and Gesture Recognition, pp. 90–95 (2000)

    Google Scholar 

  20. Sung, K., Poggio, T.: Example-based learning for view-based face detection. IEEE Trans. PAMI 20, 39–51 (1998)

    Google Scholar 

  21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  22. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Proc. CVPR (2001)

    Google Scholar 

  23. http://www.madonnalicious.com/downloads.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gangaputra, S., Geman, D. (2006). The Trace Model for Object Detection and Tracking. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_21

Download citation

  • DOI: https://doi.org/10.1007/11957959_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68794-8

  • Online ISBN: 978-3-540-68795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics