[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Visual Classification by a Hierarchy of Extended Fragments

  • Chapter
Toward Category-Level Object Recognition

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4170))

Abstract

The chapter describes visual classification by a hierarchy of semantic fragments. In fragment-based classification, objects within a class are represented by common sub-structures selected during training. The chapter describes two extensions to the basic fragment-based scheme. The first extension is the extraction and use of feature hierarchies. We describe a method that automatically constructs complete feature hierarchies from image examples, and show that features constructed hierarchically are significantly more informative and better for classification compared with similar non-hierarchical features. The second extension is the use of so-called semantic fragments to represent object parts. The goal of a semantic fragment is to represent the different possible appearances of a given object part. The visual appearance of such object parts can differ substantially, and therefore traditional image similarity-based methods are inappropriate for the task. We show how the method can automatically learn the part structure of a new domain, identify the main parts, and how their appearance changes across objects in the class. We discuss the implications of these extensions to object classification and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE TPAMI 26(11), 1475–1490 (2004)

    Google Scholar 

  2. Bart, E., Ullman, S.: Class-based matching of object parts. In: Proc. CVPR Workshop on Image and Video Registration (2004)

    Google Scholar 

  3. Biederman, I.: Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  4. Epshtein, B., Ullman, S.: Identifying Semantically Equivalent Object Fragments. In: CVPR, pp. 2–9 (2005)

    Google Scholar 

  5. Epshtein, B., Ullman, S.: Feature Hierarchies for Object Classification. In: ICCV (to appear, 2005)

    Google Scholar 

  6. Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: CVPR, pp. 264–271 (2003)

    Google Scholar 

  7. Foldiak, P.: Learning invariance from transformation sequences. Neural Computation 3(2), 194–200 (1991)

    Article  Google Scholar 

  8. Green, D., Swets, J.: Signal Detection Theory and Psychophysics. Wiley, NY (1966)

    Google Scholar 

  9. Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. In: NIPS (2001)

    Google Scholar 

  10. Itti, L., Kosh, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)

    Google Scholar 

  11. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Backpropagation applied to handwritten zip code recognition. Neural Computation 1(4), 541–551 (1989)

    Article  Google Scholar 

  12. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vis. 60(2), 91–100 (2004)

    Article  Google Scholar 

  13. Marr, D., Nishihara, H.: Representation and recognition of the spatial organization of three dimensional structure. Proceedings of the Royal Society of London B 200, 269–294 (1978)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmidt, C.: A performance evaluation of local descriptors. In: CVPR, pp. 257–264 (2003)

    Google Scholar 

  15. Mikolajczyk, K., Schmidt, C.: Scale and affine invariant point detectors. Int. J. Comp. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  16. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  17. Stringer, S., Rolls, E.: Invariant object recognition in the visual system with novel view of 3D objects. Neural Computation 14, 2585–2596 (2002)

    Article  MATH  Google Scholar 

  18. Tomasi, C., Kanade, T.: Detecting and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon University (1991)

    Google Scholar 

  19. Ullman, S., Bart, E.: Recognition invariance obtained by extended and invariant features. Neural Networks 17, 833–848 (2004)

    Article  MATH  Google Scholar 

  20. Ullman, S., Soloviev, S.: Computation of pattern invariance in brain-like structures. Neural Networks 12, 1021–1036 (1999)

    Article  Google Scholar 

  21. Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5(7), 1–6 (2002)

    Google Scholar 

  22. Vidal-Naquet, M., Ullman, S.: Object Recognition with Informative Features and Linear Classification. In: ICCV, pp. 281–288 (2003)

    Google Scholar 

  23. Wiskott, L., Fellous, J., Kruger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE TPAMI 19(7), 775–779 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ullman, S., Epshtein, B. (2006). Visual Classification by a Hierarchy of Extended Fragments. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_17

Download citation

  • DOI: https://doi.org/10.1007/11957959_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68794-8

  • Online ISBN: 978-3-540-68795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics