[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Two-Dimensional Optimal Transform for Appearance Based Object Recognition

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

  • 1858 Accesses

Abstract

This paper proposes a new method of feature extraction called two-dimensional optimal transform (2D-OPT) useful for appearance based object recognition. The 2D-OPT method provides a better discrimination power between classes by maximizing the distance between class centers. We first argue that the proposed 2D-OPT method works in the row direction of images and subsequently we propose an alternate 2D-OPT which works in the column direction of images. To straighten out the problem of massive memory requirements of the 2D-OPT method and as well the alternate 2D-OPT method, we introduce bi-projection 2D-OPT. The introduced bi-projection 2D-OPT method has the advantage of higher recognition rate, lesser memory requirements and better computing performance than the standard PCA/2D-PCA/Generalized 2D-PCA method, and the same has been revealed through extensive experimentations conducted on COIL-20 dataset and AT&T face dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belhumeur, P.N., Hespanha, J.P., Kreigman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images for appearance-based biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1160–1165 (2003)

    Article  Google Scholar 

  3. Hornegger, J., Niemann, H., Risack, R.: Appearance-based object recognition using optimal feature transforms. Pattern Recognition 33(2), 209–224 (2000)

    Article  Google Scholar 

  4. Kong, H., Wang, L., Teoh, E.K., Li, X., Wang, J.-G., Venkateswaralu, R.: Generalized 2D principal component analysis for face image representation and recognition. Neural Networks 18(5-6), 585–594 (2005)

    Article  Google Scholar 

  5. Leonardis, A., Bischof, H., Jasna, M.: Multiple Eigenspaces. Pattern Recognition 35(11), 2613–2627 (2002)

    Article  MATH  Google Scholar 

  6. Li, M., Yuan, B.: 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters 26(5), 527–532 (2005)

    Article  Google Scholar 

  7. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision 14(1), 5–24 (1995)

    Article  Google Scholar 

  8. Murase, H., Nayar, S.K.: Detection of 3D objects in cluttered scenes using hierarchical eigenspace. Pattern Recognition Letters 18(4), 375–384 (1997)

    Article  Google Scholar 

  9. Ohba, K., Ikeuchi, K.: Detectability, Uniqueness, and Reliability of eigen windows for stable verification of partially occluded objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(9), 1043–1048 (1997)

    Article  Google Scholar 

  10. Pentland, A., Moghaddam, B., Starner, T.: View-based and Modular Eigenspaces for Face Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 84–91 (1994)

    Google Scholar 

  11. Ribaric, S., Fratric, I.: A biometric identification system based on eigenpalm and eigenfingerprint features. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1698–1709 (2005)

    Article  Google Scholar 

  12. Schukat-Talamazzini, E.G.: Automatische Spracherkennung. Vieweg, Wiesbaden (1995)

    MATH  Google Scholar 

  13. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  14. Xiong, H., Swamy, M.N.S., Ahmad, M.O., Two-dimensional, F.L.D.: for face recognition. Pattern Recognition 38(7), 1121–1124 (2005)

    Article  Google Scholar 

  15. Yang, J., Zhang, D., Frangi, A.F., Yang, J., Two-Dimensional, P.C.A.: A new approach to appearance based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 131–137 (2004)

    Article  Google Scholar 

  16. Yang, J., Zhang, D., Yang, X., Yang, J.: Two-dimensional discriminant transform for face recognition. Pattern Recognition 38(7), 1125–1129 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shekar, B.H., Guru, D.S., Nagabhushan, P. (2006). Two-Dimensional Optimal Transform for Appearance Based Object Recognition. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_58

Download citation

  • DOI: https://doi.org/10.1007/11949619_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics