[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Computational Model for Boundary Detection

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

Abstract

Boundary detection in natural images is a fundamental problem in many computer vision tasks. In this paper, we argue that early stages in primary visual cortex provide ample information to address the boundary detection problem. In other words, global visual primitives such as object and region boundaries can be extracted using local features captured by the receptive fields. The anatomy of visual cortex and psychological evidences are studied to identify some of the important underlying computational principles for the boundary detection task. A scheme for boundary detection based on these principles is developed and presented. Results of testing the scheme on a benchmark set of natural images, with associated human marked boundaries, show the performance to be quantitatively competitive with existing computer vision approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. of International Conference on Computer Vision (2001)

    Google Scholar 

  2. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using brightness and texture. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (5), 530–549 (2004)

    Article  Google Scholar 

  3. Ma, W.Y., Manjunath, B.S.: Edgeflow: A technique for boundary detection and segmentation. IEEE Transactions on Image Processing 9 (8), 1375–1388 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 42 (1), 7–27 (2001)

    Article  Google Scholar 

  5. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  6. Yen, S., Finkel, L.: Extraction of perceptually salient contours by striate cortical networks. Vision Research 38(5), 719–741 (1998)

    Article  Google Scholar 

  7. Grigorescu, C., Petkov, N., Westenberg, M.: Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing 12(7), 729–739 (2003)

    Article  Google Scholar 

  8. Joshi, G.D., Sivaswamy, J.: A simple scheme for contour detection. In: Proc. of the Conference on Computer Vision Theory and Applications, pp. 236–242 (2006)

    Google Scholar 

  9. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of the Royal Society of London, Series B 207, 187–217 (1980)

    Article  Google Scholar 

  10. Hoffmann, K.P., Stone, J.: Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Research 34, 460–466 (1971)

    Article  Google Scholar 

  11. Martinez, L., Alonso, J.M.: Complex receptive fields in primary visual cortex. The Neuroscientist 9(5), 317–331 (2003)

    Article  Google Scholar 

  12. Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: physiology, psychology and ecology, 4th edn. Psychology Press (2004)

    Google Scholar 

  13. Lennie, P., Trevarthen, C., Essen, D.V., Wassle, H.: Parallel processing of visual information. Visual Perception-The Neurophysiological Foundations 92 (1990)

    Google Scholar 

  14. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Psychology 160, 106–154 (1962)

    Google Scholar 

  15. Alonso, J.M., Martinez, L.M.: Functional connectivity between simple cells and complex cells in cat striate cortex. Nature Neuroscience 1(5), 395–403 (1998)

    Article  Google Scholar 

  16. Baumann, R., van der Zwan, R., Peterhans, E.: Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey. European Journal of Neuroscience 9(6), 1290–1303 (1997)

    Article  Google Scholar 

  17. Dobbins, A., Zucker, S.W., Cynader, M.S.: Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329(6138), 438–441 (1987)

    Article  Google Scholar 

  18. von der Heydt, R., Peterhans, E., Dürsteler, M.R.: Grating cells in monkey visual cortex: coding texture? In: Blum, B. (ed.) Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, pp. 53–73 (1991)

    Google Scholar 

  19. Kruizinga, P., Petkov, N.: Nonlinear operator for oriented texture. IEEE Transactions on Image Processing 8(10), 1395–1407 (1999)

    Article  MathSciNet  Google Scholar 

  20. Alonso, J.M.: The microcircuitry of complex cells in cat striate cortex. Society for Neuroscience 22(198.1), 489 (1996)

    Google Scholar 

  21. Mel, B.W., Ruderman, D.L., Archie, K.A.: Translation-invariant orientation tuning in visual Complex Cells could derive from intradendritic computations. The Journal of Neuroscience 18(11), 4325–4334 (1998)

    Google Scholar 

  22. Liu, X., Wang, D.: A spectral histogram model for textons and texture discrimination. Vision Research 42(23), 2617–2634 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joshi, G.D., Sivaswamy, J. (2006). A Computational Model for Boundary Detection. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_16

Download citation

  • DOI: https://doi.org/10.1007/11949619_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics