Abstract
We investigate the impact of larger digit sets on the length of Double-Base Number system (DBNS) expansions. We present a new representation system called extended DBNS whose expansions can be extremely sparse. When compared with double-base chains, the average length of extended DBNS expansions of integers of size in the range 200–500 bits is approximately reduced by 20% using one precomputed point, 30% using two, and 38% using four. We also discuss a new approach to approximate an integer n by d2a3b where d belongs to a given digit set. This method, which requires some precomputations as well, leads to realistic DBNS implementations. Finally, a left-to-right scalar multiplication relying on extended DBNS is given. On an elliptic curve where operations are performed in Jacobian coordinates, improvements of up to 13% overall can be expected with this approach when compared to window NAF methods using the same number of precomputed points. In this context, it is therefore the fastest method known to date to compute a scalar multiplication on a generic elliptic curve.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)
Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptology 1, 139–150 (1989)
Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)
Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to elliptic curve cryptography. Springer, Berlin (2003)
Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Nguyen, K., Lange, T., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. In: Discrete Mathematics and its Applications. CRC Press, Inc., Boca Raton (2005)
Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)
Doche, C.: Exponentiation. In: [6], pp. 145–168
Morain, F., Olivos, J.: Speeding up the Computations on an Elliptic Curve using Addition-Subtraction Chains. Inform. Theor. Appl. 24, 531–543 (1990)
Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications of the double-base number system. IEEE Trans. on Computers 48, 1098–1106 (1999)
Miyaji, A., Ono, T., Cohen, H.: Efficient Elliptic Curve Exponentiation. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 282–291. Springer, Heidelberg (1997)
Takagi, T., Yen, S.M., Wu, B.C.: Radix-r non-adjacent form. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 99–110. Springer, Heidelberg (2004)
Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66, 155–159 (1998)
Berthé, V., Imbert, L.: On converting numbers to the double-base number system. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and Implementations XIV. Proceedings of SPIE, vol. 5559, pp. 70–78 (2004)
Ciet, M., Sica, F.: An Analysis of Double Base Number Systems and a Sublinear Scalar Multiplication Algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)
Avanzi, R.M., Sica, F.: Scalar Multiplication on Koblitz Curves Using Double Bases. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 131–146. Springer, Heidelberg (2006); See also Cryptology ePrint Archive, Report 2006/067, http://eprint.iacr.org/
Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)
Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to Elliptic Curve Cryptography (2006); Full version of the present paper, see Cryptology ePrint Archive, http://eprint.iacr.org/
Doche, C.: A set of PARI/GP functions to compute DBNS expansions, http://www.ics.mq.edu.au/~doche/dbns_basis.gp
Doche, C., Lange, T.: Arithmetic of Elliptic Curves. In: [6], pp. 267–302
Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Des. Codes Cryptogr. 39, 189–206 (2006)
Dimitrov, V.S., Järvinen, K.U., Jacobson Jr., M.J., Chan, W.F., Huang, Z.: FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer, Heidelberg (2006)
Avanzi, R.M., et al.: Extending Scalar Multiplication using Double Bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doche, C., Imbert, L. (2006). Extended Double-Base Number System with Applications to Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_24
Download citation
DOI: https://doi.org/10.1007/11941378_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49767-7
Online ISBN: 978-3-540-49769-1
eBook Packages: Computer ScienceComputer Science (R0)