[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Volume Distribution Features Based 3D Model Retrieval

  • Conference paper
Advances in Artificial Reality and Tele-Existence (ICAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4282))

Included in the following conference series:

Abstract

In this paper, a 3D mesh retrieval method is proposed based on extracting geometric features of models. The method first finds three principal directions for a model by employing the principal component analysis method, and rotates the model to align it in a reference frame. Then, three sets of planes are used to slice the model along to the directions respectively. Subsequently, three character curves of the model can be obtained and be used as descriptor to key the model in 3D mesh model library. By comparing descriptors of two models, our method can compute similarity of models. Experiences show that our method is rapid, stable and robust to deal with various mesh models with arbitrary geometric and topological complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zaharia, T., Preteux, F.: Shape-based retrieval of 3D mesh models. In: IEEE International Conference of Multimedia and Expo 2002 (ICME 2002), vol. 1, pp. 437–440 (2002)

    Google Scholar 

  2. Ankerst, M., Kastenmuller, G., Kriegel, H.: 3D shape histograms for similarity search and classification in spatial databases. In: Proc. of 6th International Symposium on Large Spatial Databases, Hong Kong, China, pp. 207–226 (1999)

    Google Scholar 

  3. Osada, R., Funkhouser, T., Chazelle, B., et al.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pu, J., Liu, Y., Gu, Y., et al.: 3D model retrieval based on 2D slice similarity measurements. In: Proc. of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, Thessaloniki, Greece, pp. 95–101 (2004)

    Google Scholar 

  5. Chen, D., Tian, X., Shen, Y., et al.: On visual similarity based 3D model retrieval. Computer Graphics Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  6. Shinagawa, Y., Kunii, T.: Constructing a Reeb graph automatically from cross section. IEEE Computer Graphics & Applications 11(6), 44–51 (1991)

    Article  Google Scholar 

  7. Xiao, Y., Werghi, N., Siebert, P.: A topological approach for segmenting human body shape. In: 12th International Conference on Image Analysis and Processing, Mantova, Italy, pp. 82–93 (2003)

    Google Scholar 

  8. Hilaga, M., Shinagawa, Y., Kohmura, T., et al.: Topology matching for fully automaticSimilarity estimation of 3D shapes. In: ACM SIGGRAPH 2001, pp. 203–212 (2001)

    Google Scholar 

  9. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic repressentation of 3D shape descriptors. In: ACM SIGGRAPH 2003, pp. 156–164 (2003)

    Google Scholar 

  10. Vranic, D.V., Saupe, D.: Description of 3D-shape using a complex function on the sphere. In: Proc. of the IEEE International Conferece on Multimedia and Expo (ICME 2002), Lausanne, Switzerland, pp. 177–180 (2002)

    Google Scholar 

  11. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three dimensional shape searching: State-of-the-art review and future trends. In: Computer-Aided Design, April 2005, vol. 37, pp. 509–530 (2005)

    Google Scholar 

  12. Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods. In: International Conference on Shape Modeling and Applications, pp. 145–156 (2004)

    Google Scholar 

  13. Weiler, K.: Edge-based data structure for solid modeling in curved- surface environments. IEEE Computer Graphics & Application 5(1), 21–40 (1985)

    Article  Google Scholar 

  14. Jolliffe, I.T.: Principal component analysis. Springer, New York (2002)

    MATH  Google Scholar 

  15. Puzicha, J., Rubner, Y., Tomasi, C., et al.: Empirical evaluation of dissimilarity measures for color and texture. In: IEEE International Conference on Computer Vision, pp. 1165–1173 (1999)

    Google Scholar 

  16. Min, P., Kazhdan, M., Funkhouser, T.: A comparison of text and shape matching for retrieval of online 3D models. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 209–220. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pang, M., Dai, W., Wu, G., Zhang, F. (2006). On Volume Distribution Features Based 3D Model Retrieval. In: Pan, Z., Cheok, A., Haller, M., Lau, R.W.H., Saito, H., Liang, R. (eds) Advances in Artificial Reality and Tele-Existence. ICAT 2006. Lecture Notes in Computer Science, vol 4282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941354_96

Download citation

  • DOI: https://doi.org/10.1007/11941354_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49776-9

  • Online ISBN: 978-3-540-49779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics