[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Fuzzy Logic Model for Software Development Effort Estimation at Personal Level

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Abstract

No single software development estimation technique is best for all situations. A careful comparison of the results of several approaches is most likely to produce realistic estimates. On the other hand, unless engineers have the capabilities provided by personal training, they cannot properly support their teams or consistently and reliably produce quality products. In this paper, an investigation aimed to compare a personal Fuzzy Logic System (FLS) with linear regression is presented. The evaluation criteria are based upon ANOVA of MRE and MER, as well as MMRE, MMER and pred(25). One hundred five programs were developed by thirty programmers. From these programs, a FLS is generated for estimating the effort of twenty programs developed by seven programmers. The adequacy checking as well as a validation of the FLS are made. Results show that a FLS can be used as an alternative for estimating the development effort at personal level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, M.A., Saliu, M.O., AlGhamdi, J.: Adaptive fuzzy logic-based framework for software development effort prediction. Information and Software Technology. Elsevier (2004)

    Google Scholar 

  2. Boehm, B., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches – A Survey. Chulani Ph. D. Report (1998)

    Google Scholar 

  3. Briand, L.C., Emam, K.E., Surmann, D., Wieczorek, I.: An Assesment and Comparison of Common Software Cost Estimation Modeling Techniques, ISERN-98-27

    Google Scholar 

  4. Briand, L.C., Langley, T., Wieczorek, I.: A replicated Assessment and Comparison of Common Software Cost Modeling Techniques. In: IEEE ICSE, Limerick, Ireland (2000)

    Google Scholar 

  5. Briand, L.C., Wieczorek, I.: Software Resource Estimation. Encyclopedia of Software Engineering, vol. 2, pp. 1160–1196. John Wiley & Sons, New York

    Google Scholar 

  6. Brooks Jr., F.P.: Three Great Challenges for Half-Century-Old Computer Science. Journal of the ACM 50(1), 25–26 (2003)

    Article  Google Scholar 

  7. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin/Cummings, M. Park (1986)

    Google Scholar 

  8. Höst, M., Wohlin, C.: A subjective effort estimation experiment. IST Journal. Elsevier (1997)

    Google Scholar 

  9. Humphrey, W.: A Discipline for Software Engineering. Addison-Wesley, Reading (1995)

    Google Scholar 

  10. Humphrey, W.: The Personal Software Process. Technical Report CMU/SEI-2000-022 (2000)

    Google Scholar 

  11. Idri, A., Abran, A., Khoshgoftaar, T.: Estimating Software Project Effort by Analogy Based on Linguistic Values. In: Eight IEEE Symposium on Software Metrics (2002)

    Google Scholar 

  12. Idri, A., Khoshgoftaar, T.: Fuzzy Analogy: a New Approach for Software Cost Estimation. In: International Workshop on Software Measurement (IWSM 2001), Canada (2001)

    Google Scholar 

  13. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E., Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transactions on SE 28(8) (August 2002)

    Google Scholar 

  14. Kitchenham, B.A., MacDonell, S.G., Pickard, L.M., Shepperd, M.J.: What Accuracy Statistics Really Measure. IEE Proceedings Software 148(3), 81–85 (2001)

    Article  Google Scholar 

  15. MacDonell, S.G.: Software source code sizing using fuzzy logic modelling. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  16. MacDonell, S.G., Gray, A.R.: Alternatives to Regression Models for Estimating Software Projects. In: Proceedings of the IFPUG Fall Conference, Dallas TX, IFPUG (1996)

    Google Scholar 

  17. Mendes, E., Mosley, N., Watson, I.: A Comparison of Case-Based Reasoning Approaches to Web Hypermedia project Cost Estimation. ACM Press, New York (2002)

    Google Scholar 

  18. Montgomery, D., Peck, E.: Introduction to linear regression analysis. John Wiley, Chichester (2001)

    MATH  Google Scholar 

  19. Park, R.E.: Software Size Measurement: A Framework for Counting Source Statements. Software Engineering Institute, Carnegie Mellon University (September 1992)

    Google Scholar 

  20. Schofield, C.: Non-Algorithmic Effort Estimation Techniques. ESERG, TR98-01 (1998)

    Google Scholar 

  21. Secretaría de Economía. Programa para el Desarrollo de la Industria del Software (2002)

    Google Scholar 

  22. Stensrud, E., Foss, T., Kitchenham, B., Myrtveit, I.: An Empirical Validation of the Relationship Between the Relative Error and Project Size. In: Eighth IEEE SM Symposium (2002)

    Google Scholar 

  23. Weiss, N.A.: Introductory Statistics. Addison-Wesley, Reading (1999)

    MATH  Google Scholar 

  24. Zadeh, L.A.: From Computing with Numbers to Computing with Words – From Manipulation of Measurements to Manipulation of Perceptions. IEEE Transactions on Circuits and Systems – I: Fundamental Theory and Applications 45(1), 105–119 (1999)

    Article  MathSciNet  Google Scholar 

  25. Zhiwei Xu, Z., Khoshgoftaar, T.M.: Identification of fuzzy models of software cost estimation. Elsevier Fuzzy Sets and Systems 145 (July 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Martin, C., Yáñez-Márquez, C., Gutierrez-Tornes, A. (2006). A Fuzzy Logic Model for Software Development Effort Estimation at Personal Level. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_12

Download citation

  • DOI: https://doi.org/10.1007/11925231_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics