Abstract
In this paper, we propose a framework for a discrete event simulator for simulating the DNA based nano-robotical systems. We describe a physical model that captures the conformational changes of the solute molecules. We also present methods to simulate various chemical reactions due to the molecular collisions, including hybridization, dehybridization and strand displacement. The feasibility of such a framework is demonstrated by some preliminary results.
The work is supported by NSF EMT Grants CCF-0523555 and CCF-0432038.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)
Alberti, P., Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA 100, 1569–1573 (2003)
Allison, S.A., Mazur, S.: Modeling the free solution electrophoretic mobility of short dna fragments. Biopolymers 46, 359–373 (1998)
Allison, S.A., McCammon, J.A.: Multistep brownian dynamics: application to short wormlike chains. Biopolymers 23, 363–375 (1984)
Aragon, S.R., Pecora, R.: Dynamics of wormlike chains. Macromolecules 18, 1868 (1985)
Arridge, R.G.C.: An introduction to polymer mechanics (1985)
Arteca, G.A., Edvinsson, T., Elvingson, C.: Compaction of grafted wormlike chains under variable confinement. Phys. Chem. Chem. Phys. 3, 3737–3741 (2001)
Maier, B., Bensimon, B.D., Croquette, V.: Replication by a single dna polymerase of a stretched single-stranded dna. Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000)
Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100, 2191–2196 (2003)
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)
Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)
Biswas, I., Yamamoto, A., Hsieh, P.: Branch migration through dna sequence heterology. J. Mol. Bio. (1998)
Bois, J.S., Venkataraman, S., Choi, H.M.T., Spakowitz, A.J., Wang, G., Pierce, N.A.: Topological constraints in nucleic acid hybridization kinetics. Nucleic Acids Research 33(13), 4090–4095 (2005)
Bouchiat, C., Wang, M.D., Allemand, J., Strick, T., Block, S.M., Croquette, V.: Estimating the persistence length of a worm-like chain molecules from force-extension measurements. Biophys. J. 76, 409 (1999)
Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Entropic elasticity of lambda-phage dna mechanics. Science 265, 1599 (1994)
Bustamante, C., Smith, S., Liphardt, J., Smith, D.: Single-molecule studies of dna mechanics. Current Opinion in Structural Biology 10, 279 (2000)
Butler, J.E., Shaqfeh, E.S.G.: Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multi-body hydrodynamic interaction. Journal of Chemical Physics 122(014901) (2005)
Carri, G.A., Marucho, M.: Statistical mechanics of worm-like polymers from a new generating function. J. Chem. Phys. 121(12), 6064–6077 (2004)
Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)
Chen, Y., Mao, C.: Putting a brake on an autonomous DNA nanomotor. J. Am. Chem. Soc. 126, 8626–8627 (2004)
Chen, Y., Wang, M., Mao, C.: An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Ed. 43, 3554–3557 (2004)
Cocco, S., Marko, J.F., Monasson, R.: Theoretical models for single-molucule dna and rna experiments: from elasticity to unzipping. In: CRAS, special issue dedicated to Single Molecule Experiments (to appear, 2002)
Desruisseaux, C., Long, D., Drouin, G., Slater, G.W.: Electrophoresis of composite molecular objects. 1. relation between friction, charge and ionic strength in free solution. Macromolecules 34, 44–59 (2001)
Dessinges, M.N., Maier, B., Zhang, Y., Peliti, M., Bensimon, D., Croquette, V.: Stretching single stranded dna, a model polyelectrolyte. Phys. Rev. Lett. 89, 248102 (2002)
Dimitrakopoulos, P.: Stress and configuration relaxation of an initially straight flexible polymer. J. Fluid Mech. 513, 265–286 (2004)
Doyle, P.S., Underhill, P.T.: Brownian dynamics simulations of polymers and soft matter. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 2619–2630 (2005)
Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. In: SIAM Rev. (in press)
Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003)
Fixman, M., Kovac, J.: Polymer conformation statistics iii: Modified gaussian models of the stiff chains. J. Chem. Phys. 58, 1564–1568 (1973)
Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6(3), 325–338 (2000)
Fournier, J.B.: Wormlike chain or tense string? a question of resolution. Continuum Mechanical Thermodynamics 14, 241 (2002)
Frank-Kamenetskii, M.D.: Biophysics of dna molecule. Phys. Rep. 288, 13–60 (1997)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)
Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)
Hartemink, A.J., Gifford, D.K.: Thermodynamics simulation of deoxyoligonucleotide hybridization for dna computation (1997)
Heath, P.J., Gebe, J.A., Allison, S.A., Schurr, J.M.: Comparison of analytical theory with brownian dynamics simulations for small linear and circular dnas. Macromolecules 29, 3583 (1996)
Hur, J.S., Shaqfeh, E.S.G.: Brownian dynamics simulations of single dna molecule in shear flow. J. Rheol. 44(4), 713–742 (2000)
Isambert, H., Siggia, E.D.: Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc. Natl. Acad. Sci. USA 97(12), 6515–6520 (2000)
James, H.M., Guth, E.: Theory of the elastic properties of rubber. Journal of Chemical Physics 10, 455–481 (1943)
Jendrejack, R.M., Pablo, J.J., Graham, M.D.: Stochastic simulations of dna in flow: Dynamics and the effects of hydrodynamic interactions. Journal of Chemical Physics 116(17), 7752 (2002)
Santalucia Jr., J.: A unified view of polymer, dumbbell and oligonucleotide dna nearest-neighbor thermodynamics. PNAS 95, 1460–1465 (1998)
Kierzek, A.M.: Stocks: Stochastic kinetic simulations of biochemical systems with gillespie algorithm. Bioinformatics 18, 470–481 (2002)
Klenin, K., Merlitz, H., Langowski, J.: A brownian dynamics program for the simulation of linear and circular dna and other wormlike chain polyelectrolytes. Biophys. J 74(2), 780–788 (1998)
Kovac, J., Crabb, C.: Modified gaussian model for rubber elasticity. 2. the wormlike chain. Macromolecules 15(2), 537 (1982)
Kuhn, M., Grun, F.: Relationships between elastic constants and stretching double refraction of highly elastic substances. Kolloid-Z 101, 294 (1942)
Kutter, S.: Elasticity of polymers with internal topological constraints. PhD Thesis (August 2002)
LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)
Ladoux, B., Quivy, J.P., Doyle, P.S., Almouzni, G., Viovy, J.L.: Direct imaging of single-molecules: from dynamics of a single dna chain to the study of complex dna-protein interactions. Sci. Prog. 84, 267 (2001)
Langowski, J.: Polymer chain models of dna and chromatin (manuscript, 2006)
Larson, R.G., Hu, H., Smith, D.E., Chu, S.: Brownian dynamics simulation of a dna molecule in an extensional flow field. J. Rheol. 43(2), 267–304 (1999)
Larson, R.G., Perkins, T., Smith, D., Chu, S.: Hydrodynamics of a dna molecule in a flow field. Phys. Rev. E. 55, 1794–1797 (1997)
Larson, R.G., Perkins, T.T., Smith, D.E., Chu, S.: Brownian dynamics simulations of a dna molecule in an extensional flow field. J. Rheol. 43, 267 (1999)
Li, J., Tan, W.: A single DNA molecule nanomotor. Nano Lett. 2, 315–318 (2002)
Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm dna junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)
Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M., Smith, L.M.: DNA computing on surfaces. Nature 403, 175–179 (2000)
Malevanets, A., Yoemans, J.M.: Dynamics of short polymer chains in solution. Europhysics Letters 52(2), 231 (2000)
Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)
Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)
Mao, C., Sun, W., Shen, Z., Seeman, N.C.: A DNA nanomechanical device based on the B-Z transition. Nature 397, 144–146 (1999)
Marko, J., Siggia, E.D.: Bending and twisting elasticity of dna. Macromolecules 27, 981 (1994)
Marko, J.F., Siggia, E.D.: Stretching dna. Macromolecules 28, 8759 (1995)
Meagher, R.J., Won, J., McCormick, L.C., Nedelcu, S., Bertrand, M.M., Bertarm, J.L., Drouin, G., Barron, A.E., Slaters, G.W.: End-labeled free-solution electrophoresis of dna. Electrophoresis 26, 331–350 (2005)
Mercier, J., Slater, G.W.: Solid phase dna amplification: a brownian dynamics study of crowding effects. Biophysical Journal 89, 32–42 (2005)
Murphy, M.C., Rasnik, I., Cheng, W., Lohman, T.M., Ha, T.: Probing single-stranded dna conformation flexibility using fluorescence spectroscopy. Biophysical Journal 86, 2530–2537 (2004)
Odijk, T.: Stiff chains and filaments under tension. Macromolecule 28, 7016–7018 (1995)
Panyutin, I.G., Hsieh, P.: The kinetics of spontaneous dna branch migration. Proc. Natl. Acad. Sci. USA 91(6), 2021–2025 (1994)
Pedersen, J.S., Laso, M., Schurtenberger, P.: Monte carlo study of excluded volume effects in wormlike micelles and semiflexible polymers. Phys. Rev. E 54(6), 5917–5920 (1996)
Peyret, N., Seneviratne, P.A., Allawi, H.T., Santalucia, J.: Nearest-neighbor thermodynamics and nmr of dna sequences with internal aa,cc,gg and tt mismatches. Biochemistry 38, 3468 (1999)
Rao, C., Arkin, A.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. J. of Chem. Phys. 118, 4999–5010 (2003)
Reif, J.H.: The design of autonomous DNA nanomechanical devices: Walking and rolling DNA. In: The 8th International Meeting on DNA Based Computers (DNA 8) (2002)
Rief, M., Clausen-Schaumann, H., Gaub, H.E.: Sequence-dependent mechanics of single dna molecules. Nature Structural Biology 6, 346–349 (1999)
Sales-Pardo, M., Guimera, R., Moreira, A.A., Widom, J., Amaral, L.A.: Mesoscopic modeling for nucleic acid chain dynamics. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 71, 051902 (2005)
Santalucia, J., Hicks, D.: The thermodynamics of dna structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004)
Sahu, S., Wang, B., Reif, J.H.: A Framework for Modeling DNA Based Molecular Systems. Technical Report, Duke University (2006)
Sha, R., Liu, R., Millar, D.P., Seeman, N.C.: Atomic force microscopy of parallel DNA branched junction arrays. Chemistry and Biology 7, 743–751 (2000)
Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004)
Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)
Simmel, F.C., Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 63, 041913 (2001)
Simmel, F.C., Yurke, B.: A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett. 80, 883–885 (2002)
Smith, S.B., Finzi, L., Bustamante, B.: Direct mechanical measurements of the elasticity of single dna molecules by using magnetic beads. Science 258, 1122 (1992)
Smith, S.B., Cui, Y., Bustamante, C.: Overstretching b-dna: the elastic response of individual double-stranded and single-stranded dna molecules. Science 271, 795–799 (1996)
Somasi, M., Khomami, B., Woo, N.J., Hur, J.S., Shaqfeh, E.S.G.: Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues. J. Non-Newtonian Fluid Mech. 108, 227–255 (2002)
Stellwagen, E., Stellwagen, N.C.: Determining the electrophoretic mobility and translational diffusion coefficients of dna molecules in free solution. Electrophoresis 23(16), 2794–2803 (2002)
Storm, C., Nelson, P.C.: Theory of high-force dna stretching and overstretching. Physical Review E 67, 051906 (2003)
Thompson, B.J., Camien, M.N., Warner, R.C.: Kinetics of branch migration in double-stranded dna. Proc. Natl. Acad. Sci. USA 73(7), 2299–2303 (1976)
Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Molecular devices - a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed. 44, 4355–4358 (2005)
Tinoco, I., Bustamante, C.: The effect of force on thermodynamics and kinetics of single molecule reactions. Biophys Chem 513, 101–102 (2002)
Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)
Turberfield, A.J., Yurke, B., Mills Jr., A.P.: DNA hybridization catalysts and molecular tweezers. In: DNA5 (2000)
Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry (2004)
Vologodskii, A.V.: Monte carlo simulation of dna topological properties (preprint, 2004)
Voter, A.F.: Introduction to kinetic monte carlo method. Springer, NATO publishing unit (2005)
Wetmur, J.G., Davidson, N.: Kinetics of renaturation of dna. J. Mol. Biol. 31, 349–370 (1968)
Winfree, E.: Complexity of restricted and unrestricted models of molecular computation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers 1. DIMACS, vol. 27, pp. 187–198. American Mathematical Society (1996)
Winfree, E.: Simulation of computing by self-assembly. Technical Report 1998.22, Caltech (1998)
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)
Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical Society (1999)
Wolfinger, M.T., Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler, P.F.: Exact Folding Dynamics of RNA Secondary Structures. J. Phys. A: Math. Gen. 37, 4731–4741 (2004)
Yamakawa, H., Yoshizaki, T.: Dynamics of helical wormlike chains. Journal of Chemical Physics 75(2), 1016 (1981)
Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)
Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)
Yan, J., Marko, J.F.: Localized single-stranded bubble mechanism for cyclization of short double helix dna. Phys. Rev. Lett. 93(10), 108108 (2004)
Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H.: Design of autonomous DNA cellular automata. In: Proc. 11th International Meeting on DNA Computing, pp. 376–387 (2005)
Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Proc. 10th International Meeting on DNA Computing, pp. 344–356 (2004)
Yurke, B., Mills, A.P., Turberfield, A.J.: A molecular machine made of and powdered by DNA. Biophysics 78, 2629 (2000)
Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)
Zhang, Y., Zhou, H., Ou-Yang, Z.: Stretching single-stranded dna: Interplay of electrostatic, base-pairing, and base-pair stacking interactions. Biophys J 81(2), 1133–1143 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sahu, S., Wang, B., Reif, J.H. (2006). A Framework for Modeling DNA Based Molecular Systems. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_19
Download citation
DOI: https://doi.org/10.1007/11925903_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49024-1
Online ISBN: 978-3-540-68423-7
eBook Packages: Computer ScienceComputer Science (R0)