[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Method for Spoken Text Feature Extraction in Semantic Video Retrieval

  • Conference paper
Advances in Multimedia Information Processing - PCM 2006 (PCM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4261))

Included in the following conference series:

  • 743 Accesses

Abstract

We propose a novel method for extracting text feature from the automatic speech recognition (ASR) results in semantic video retrieval. We combine HowNet-rule-based knowledge with statistic information to build special concept lexicons, which can rapidly narrow the vocabulary and improve the retrieval precision. Furthermore, we use the term precision (TP) weighting method to analyze ASR texts. This weighting method is sensitive to the sparse but important terms in the relevant documents. Experiments show that the proposed method is effective for semantic video retrieval.

This work was supported by Beijing Science and Technology Planning Program of China (D0106008040291), the Key Project of Beijing Natural Science Foundation (4051004), and the Key Project of International Science and Technology Cooperation (2005DFA11060).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, A., Argillander, J., Campbell, M., Haubold, A., Ebadollahi, S., Kang, F., Naphade, M.R., Natsev, A., Smith, J.R., Tešić, J., Volkmer, T.: Ibm research trecvid-2005 video retrieval system. In: NIST TRECVID-2005 Workshop, Gaithersburg, Maryland (November 2005)

    Google Scholar 

  2. Snoek, C.G.M., van Gemert, J.C., Geusebroek, J.-M., Huurnink, B., Koelma, D.C., Nguyen, G.P., de Rooij, O., Seinstra, F.J., Smeulders, A.W.M., Veenman, C.J., Worring, M.: The MediaMill TRECVID 2005 Semantic Video Search Engine. In: Proceedings of the 3rd TRECVID Workshop, Gaithersburg, USA (November 2005)

    Google Scholar 

  3. Chua, T.-S., Neo, S.-Y., Li, K.-Y., Wang, G., Shi, R., Zhao, M., Xu, H.: TRECVID 2004 Search and Feature Extraction Task by NUS PRIS. In: TRECVID 2004, Gaithersburg, Maryland, USA, November 15-16 (2004)

    Google Scholar 

  4. The TREC Video Retrieval Track Home Page, http://www-nlpir.nist.gov/projects/trecvid/

  5. Hauptmann, A., Ng, T.D., Jin, R.: Video Retrieval using Speech and Image Information. In: Proceedings of 2003 Electronic Imaging Conference, Storage and Retrieval for Multimedia Databases, Santa Clara, CA, January 20-24 (2003)

    Google Scholar 

  6. Lam, K., Salton, G.: Term Weighting in Information Retrieval Using the Term Precision Model, vol. 29(1), pp. 152–170. ACM, New York (1982)

    Google Scholar 

  7. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Croft, W.B., van Rijsbergen, C.J. (eds.) SIGIR 1994: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. Springer, Heidelberg (1994)

    Google Scholar 

  8. Hiemstra, D.: A probabilistic justification for using tf idf term weighting in information retrieval. International Journal on Digital Libraries 3(2) (2000)

    Google Scholar 

  9. Dong, Z., Dong, Q.: HowNet, http://www.keenage.com/

  10. Porter, M.F.: An Algorithm for Suffix Stripping Program, 14, pp. 130–137 (1980)

    Google Scholar 

  11. TREC 2001 National Institute of Standards and Technology, Text Retrieval Conference web page (2001), http://www.trec.nist.gov/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, J., Li, J., Zhang, Y., Tang, S. (2006). A Novel Method for Spoken Text Feature Extraction in Semantic Video Retrieval. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_32

Download citation

  • DOI: https://doi.org/10.1007/11922162_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48766-1

  • Online ISBN: 978-3-540-48769-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics