Abstract
We propose a novel method for extracting text feature from the automatic speech recognition (ASR) results in semantic video retrieval. We combine HowNet-rule-based knowledge with statistic information to build special concept lexicons, which can rapidly narrow the vocabulary and improve the retrieval precision. Furthermore, we use the term precision (TP) weighting method to analyze ASR texts. This weighting method is sensitive to the sparse but important terms in the relevant documents. Experiments show that the proposed method is effective for semantic video retrieval.
This work was supported by Beijing Science and Technology Planning Program of China (D0106008040291), the Key Project of Beijing Natural Science Foundation (4051004), and the Key Project of International Science and Technology Cooperation (2005DFA11060).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amir, A., Argillander, J., Campbell, M., Haubold, A., Ebadollahi, S., Kang, F., Naphade, M.R., Natsev, A., Smith, J.R., Tešić, J., Volkmer, T.: Ibm research trecvid-2005 video retrieval system. In: NIST TRECVID-2005 Workshop, Gaithersburg, Maryland (November 2005)
Snoek, C.G.M., van Gemert, J.C., Geusebroek, J.-M., Huurnink, B., Koelma, D.C., Nguyen, G.P., de Rooij, O., Seinstra, F.J., Smeulders, A.W.M., Veenman, C.J., Worring, M.: The MediaMill TRECVID 2005 Semantic Video Search Engine. In: Proceedings of the 3rd TRECVID Workshop, Gaithersburg, USA (November 2005)
Chua, T.-S., Neo, S.-Y., Li, K.-Y., Wang, G., Shi, R., Zhao, M., Xu, H.: TRECVID 2004 Search and Feature Extraction Task by NUS PRIS. In: TRECVID 2004, Gaithersburg, Maryland, USA, November 15-16 (2004)
The TREC Video Retrieval Track Home Page, http://www-nlpir.nist.gov/projects/trecvid/
Hauptmann, A., Ng, T.D., Jin, R.: Video Retrieval using Speech and Image Information. In: Proceedings of 2003 Electronic Imaging Conference, Storage and Retrieval for Multimedia Databases, Santa Clara, CA, January 20-24 (2003)
Lam, K., Salton, G.: Term Weighting in Information Retrieval Using the Term Precision Model, vol. 29(1), pp. 152–170. ACM, New York (1982)
Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Croft, W.B., van Rijsbergen, C.J. (eds.) SIGIR 1994: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. Springer, Heidelberg (1994)
Hiemstra, D.: A probabilistic justification for using tf idf term weighting in information retrieval. International Journal on Digital Libraries 3(2) (2000)
Dong, Z., Dong, Q.: HowNet, http://www.keenage.com/
Porter, M.F.: An Algorithm for Suffix Stripping Program, 14, pp. 130–137 (1980)
TREC 2001 National Institute of Standards and Technology, Text Retrieval Conference web page (2001), http://www.trec.nist.gov/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cao, J., Li, J., Zhang, Y., Tang, S. (2006). A Novel Method for Spoken Text Feature Extraction in Semantic Video Retrieval. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_32
Download citation
DOI: https://doi.org/10.1007/11922162_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48766-1
Online ISBN: 978-3-540-48769-2
eBook Packages: Computer ScienceComputer Science (R0)