[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Issues and Implementation of C 1 and C 2 Natural Neighbor Interpolation

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Included in the following conference series:

Abstract

Smooth local coordinates have been proposed by Hiyoshi and Sugihara 2000 to improve the classical Sibson’s and Laplace coordinates. These smooth local coordinates are computed by integrating geometric quantities over weights in the power diagram. In this paper we describe how to efficiently implement the Voronoi based C 2 local coordinates. The globally C 2 interpolant that Hiyoshi and Sugihara presented in 2004 is then compared to Sibson’s and Farin’s C 1 interpolants when applied to scattered data interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sibson, R.: A vector identity for the Dirichlet tessellation. Mathematical Proceedings of Cambridge Philosophical Society 87, 151–155 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Christ, N.H., Friedberg, R., Lee, T.D.: Weights of links and plaquettes in a random lattice. Nuclear Physics B 210(3), 337–346 (1982)

    Article  MathSciNet  Google Scholar 

  3. Belikov, V., Ivanov, V., Kontorovich, V., Korytnik, S., Semenov, A.: The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Comp. Math. and Math. Physics 37, 9–15 (1997)

    MathSciNet  Google Scholar 

  4. Sugihara, K.: Surface interpolation based on new local coordinates. Computer Aided Design 13, 51–58 (1999)

    Article  Google Scholar 

  5. Hiyoshi, H., Sugihara, K.: Voronoi-based interpolation with higher continuity. In: Symposium on Computational Geometry, pp. 242–250 (2000)

    Google Scholar 

  6. Hiyoshi, H.: Stable computation of natural neighbor interpolation. In: Proc. of the 2nd Int. Sym. on Voronoi Diagrams in Science and Engineering, pp. 325–333 (2005)

    Google Scholar 

  7. Sibson, R.: A brief description of natural neighbor interpolation. Interpreting Multivariate Data, 21–36 (1981)

    Google Scholar 

  8. Farin, G.: Surfaces over Dirichlet tessellations. Computer Aided Geometric Design 7, 281–292 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hiyoshi, H., Sugihara, K.: Improving the global continuity of the natural neighbor interpolation. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 71–80. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Gross, L., Farin, G.E.: A transfinite form of Sibson’s interpolant. Discrete Applied Mathematics 93, 33–50 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hiyoshi, H., Sugihara, K.: An interpolant based on line segment voronoi diagrams. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 119–128. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Anton, F., Mioc, D., Gold, C.: Line Voronoi diagram based interpolation and application to digital terrain modelling. In: ISPRS - XXth Congress, vol. 2. International Society for Photogrammetry and Remote Sensing (2004)

    Google Scholar 

  13. Boissonat, J.D., Flötotto, J.: A coordinate system associated with points scattered on a surface. Computer-Aided Design 36, 161–174 (2004)

    Article  Google Scholar 

  14. Fan, Q., Efrat, A., Koltun, V., Krishnan, S., Venkatasubramanian, S.: Hardware-assisted natural neighbor interpolation. In: Proc. 7th Workshop on Algorithm Engineering and Experiments (ALENEX) (2005)

    Google Scholar 

  15. Park, S., Linsen, L., Kreylos, O., Owens, J., Hamann, B.: Discrete sibson interpolation. IEEE Trans. on Vis. and Comp. Graphics 12 2, 243–253 (2006)

    Article  Google Scholar 

  16. Lodha, S.K., Franke, R.: Scattered data techniques for surfaces. In: Proc. of Dagstuhl Conf. on Sci. Vis., pp. 182–222. IEEE Comp. Soc. Press, Los Alamitos (1999)

    Google Scholar 

  17. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Appl. and Comp. Math., vol. 17. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing surveys 23, 345–405 (1991)

    Article  Google Scholar 

  19. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and applications of Voronoi diagrams. Wiley series in probability and statistics. John Wiley & Sons Ltd., Chichester (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bobach, T., Bertram, M., Umlauf, G. (2006). Issues and Implementation of C 1 and C 2 Natural Neighbor Interpolation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_20

Download citation

  • DOI: https://doi.org/10.1007/11919629_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics