Abstract
Smooth local coordinates have been proposed by Hiyoshi and Sugihara 2000 to improve the classical Sibson’s and Laplace coordinates. These smooth local coordinates are computed by integrating geometric quantities over weights in the power diagram. In this paper we describe how to efficiently implement the Voronoi based C 2 local coordinates. The globally C 2 interpolant that Hiyoshi and Sugihara presented in 2004 is then compared to Sibson’s and Farin’s C 1 interpolants when applied to scattered data interpolation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sibson, R.: A vector identity for the Dirichlet tessellation. Mathematical Proceedings of Cambridge Philosophical Society 87, 151–155 (1980)
Christ, N.H., Friedberg, R., Lee, T.D.: Weights of links and plaquettes in a random lattice. Nuclear Physics B 210(3), 337–346 (1982)
Belikov, V., Ivanov, V., Kontorovich, V., Korytnik, S., Semenov, A.: The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Comp. Math. and Math. Physics 37, 9–15 (1997)
Sugihara, K.: Surface interpolation based on new local coordinates. Computer Aided Design 13, 51–58 (1999)
Hiyoshi, H., Sugihara, K.: Voronoi-based interpolation with higher continuity. In: Symposium on Computational Geometry, pp. 242–250 (2000)
Hiyoshi, H.: Stable computation of natural neighbor interpolation. In: Proc. of the 2nd Int. Sym. on Voronoi Diagrams in Science and Engineering, pp. 325–333 (2005)
Sibson, R.: A brief description of natural neighbor interpolation. Interpreting Multivariate Data, 21–36 (1981)
Farin, G.: Surfaces over Dirichlet tessellations. Computer Aided Geometric Design 7, 281–292 (1990)
Hiyoshi, H., Sugihara, K.: Improving the global continuity of the natural neighbor interpolation. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 71–80. Springer, Heidelberg (2004)
Gross, L., Farin, G.E.: A transfinite form of Sibson’s interpolant. Discrete Applied Mathematics 93, 33–50 (1999)
Hiyoshi, H., Sugihara, K.: An interpolant based on line segment voronoi diagrams. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 119–128. Springer, Heidelberg (2000)
Anton, F., Mioc, D., Gold, C.: Line Voronoi diagram based interpolation and application to digital terrain modelling. In: ISPRS - XXth Congress, vol. 2. International Society for Photogrammetry and Remote Sensing (2004)
Boissonat, J.D., Flötotto, J.: A coordinate system associated with points scattered on a surface. Computer-Aided Design 36, 161–174 (2004)
Fan, Q., Efrat, A., Koltun, V., Krishnan, S., Venkatasubramanian, S.: Hardware-assisted natural neighbor interpolation. In: Proc. 7th Workshop on Algorithm Engineering and Experiments (ALENEX) (2005)
Park, S., Linsen, L., Kreylos, O., Owens, J., Hamann, B.: Discrete sibson interpolation. IEEE Trans. on Vis. and Comp. Graphics 12 2, 243–253 (2006)
Lodha, S.K., Franke, R.: Scattered data techniques for surfaces. In: Proc. of Dagstuhl Conf. on Sci. Vis., pp. 182–222. IEEE Comp. Soc. Press, Los Alamitos (1999)
Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Appl. and Comp. Math., vol. 17. Cambridge University Press, Cambridge (2004)
Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing surveys 23, 345–405 (1991)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and applications of Voronoi diagrams. Wiley series in probability and statistics. John Wiley & Sons Ltd., Chichester (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bobach, T., Bertram, M., Umlauf, G. (2006). Issues and Implementation of C 1 and C 2 Natural Neighbor Interpolation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_20
Download citation
DOI: https://doi.org/10.1007/11919629_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48626-8
Online ISBN: 978-3-540-48627-5
eBook Packages: Computer ScienceComputer Science (R0)