Abstract
Integration and interoperability is a basic requirement for geographic information systems (GIS). The web provides access to geographic data in several ways: on the one hand, web-based interactive GIS applications provide maps and routing information to end users; on the other hand, the data of some GIS can be accessed in a programmatic way using a web service. Thereby, the data is made available for other GIS applications. However, integrating data from various sources is a tedious task which requires the mapping of the involved schemas as a first step. Schema matching analyzes and identifies similarities of two schemas, but all approaches can be only semi-automatic as human intervention is required to verify the result of a schema matching algorithm. In this paper, we present an approach that improves the matching result of existing solutions by using semantic information provided by the context of the geographic application. This reduces the effort for manually correcting the results which has been validated in several application examples.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11915072_109.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumüller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and Ontology Matching with COMA++. In: Proc. Intl. Conf. on Management of Data (SIGMOD) (2005)
Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema matching. SIGMOD Record 33(4), 38–43 (2004)
Cox, S., Daisey, P., Lake, R., Portele, C., Whiteside, A.: OpenGIS Geography Markup Language (GML) Implementation Specification. Version 3.1.0 (2004)
Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: Proc. Conf. on Very Large Data Bases (VLDB), pp. 610–621 (2001)
Devogele, T., Parent, C., Spaccapietra, S.: On Spatial Database Integration. Intl. Journal of Geographical Information Science 12(4), 335–352 (1998)
Euzenat, J. (ed.): State of the art in ontology alignment. Deliverable 2.2.3, Knowledge Web Project (2004), http://knowledgeweb.semanticweb.org/
Fonseca, F., Davis, C., Camara, G.: Bridging ontologies and conceptual schemas in geographic information integration. Geoinformatica 7(4), 355–378 (2003)
Kavouras, M., Kokla, M., Tomai, E.: Comparing categories among geographic ontologies. Computers & Geosciences 31(2), 145–154 (2005)
Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe – A Generic Role Based Metamodel for Model Management. In: Proc. 4th Intl. Conf. on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus (2005)
Kim, W., Seo, J.: Classifying Schematic and Data Heterogeneity in Multi-database Systems. IEEE Computer 24(12), 12–18 (1991)
Klein, M., Fensel, D., Harmelen, F., Horrocks, I.: The Relation between Ontology and Schema-languages: Translating OIL-specifications in XML-Schema. In: Proc. ECAI Workshop on Applications of Ontologies and Problem-Solving Methods, Berlin (2000)
Kokla, M., Kavouras, M.: Fusion of top-level and geographic domain ontologies based on context formation and complementarity. Intl. Journal of Geographical Information Science 15(7), 679–687 (2001)
Manoah, S., Boucelma, O., Lassoued, Y.: Schema Matching in GIS. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS, vol. 3192, pp. 500–509. Springer, Heidelberg (2004)
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Proc. Conf. on Very Large Data Bases (VLDB), Rome, Italy, pp. 49–58 (2001)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm. In: Proc. 18th International Conference on Data Engineering (ICDE), San Jose, CA, pp. 117–128 (2002)
Nyerges, L.T.: Schema integration analysis for the development of GIS databases. Intl. Journal of Geographical Information Systems 3(2), 153–183 (1989)
Park, J.: Schema Integration Methodology and Toolkit for Heterogeneous and Distributed Geographic Databases. Working Paper, University of Minnesota (2001), http://misrc.umn.edu/workingpapers/abstracts/0131.aspx
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)
Rodríguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity Among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2), 442–456 (2003)
Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)
Xu, L., Embley, D.W.: Using domain ontologies to discover direct and indirect matches for schema elements. In: Proc. Workshop on Semantic Integration at ISWC 2003, Sanibel Island, FL (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Quix, C., Ragia, L., Cai, L., Gan, T. (2006). Matching Schemas for Geographical Information Systems Using Semantic Information. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops. OTM 2006. Lecture Notes in Computer Science, vol 4278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11915072_63
Download citation
DOI: https://doi.org/10.1007/11915072_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48273-4
Online ISBN: 978-3-540-48276-5
eBook Packages: Computer ScienceComputer Science (R0)