Abstract
A novel algorithm of adaptive multi-objective particle swarm optimization (AMOPSO-II) is proposed and used to search the optimal color image fusion parameters, which can achieve the optimal fusion indices. First the algorithm of AMOPSO-II is designed; then the model of color image fusion in YUV color space is established, and the proper evaluation indices are given; and finally AMOPSO-II is used to search the optimal fusion parameters. AMOPSO-II uses a new crowding operator to improve the distribution of nondominated solutions along the Pareto front, and uses the uniform design to obtain the optimal combination of the parameters of AMOPSO-II. Experimental results indicate that AMOPSO-II has better exploratory capabilities than MOPSO and AMOPSO-I, and that the approach to color image fusion based on AMOPSO-II realizes the Pareto optimal color image fusion.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evol. Comput. 2, 149–172 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-Report 103, ETH, Zurich, Switzerland (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2, 182–197 (2002)
Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling Multiple Objectives with Particle Swarm Optimization. IEEE Trans. Evol. Comput. 3, 256–279 (2004)
Huang, V.L., Suganthan, P.N., Liang, J.J.: Comprehensive Learning Particle Swarm Optimizer for Solving Multiobjective Optimization Problems. Int. J. Intell. Syst. 2, 209–226 (2006)
Niu, Y.F., Shen, L.C.: A Novel Approach to Image Fusion Based on Multi-Objective Optimization. In: Proc. WCICA 2006, Dalian, pp. 9911–9915 (2006)
Bogoni, L., Hansen, M.: Pattern-Selective Color Image Fusion. Pattern Recogn. 8, 1515–1526 (2001)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE Int. Conf. on Neural Networks, Perth, pp. 1942–1948 (1995)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)
Leung, Y.W., Wang, Y.P.: Multiobjective Programming Using Uniform Design and Genetic Algorithm. IEEE Trans. Syst. Man Cybern. Pt. C: Appl. Rev. 3, 293–304 (2000)
Huang, X.S., Chen, Z.: A Wavelet-Based Image Fusion Algorithm. In: Proc. IEEE TENCON, Beijing, pp. 602–605 (2002)
Toet, A., Lucassen, M.P.: A Universal Color Image Quality Metric. In: Proc. SPIE, vol. 5108, pp. 13–23 (2003)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 4, 600–612 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niu, Y., Shen, L. (2006). An Adaptive Multi-objective Particle Swarm Optimization for Color Image Fusion. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_60
Download citation
DOI: https://doi.org/10.1007/11903697_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47331-2
Online ISBN: 978-3-540-47332-9
eBook Packages: Computer ScienceComputer Science (R0)