[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tolerant Ad Hoc Data Propagation with Error Quantification

  • Conference paper
Current Trends in Database Technology – EDBT 2006 (EDBT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4254))

Included in the following conference series:

  • 642 Accesses

Abstract

Nowadays everybody uses a variety of different systems managing similar information, for example in the home entertainment sector. Unfortunately, these systems are largely heterogeneous, mostly with respect to the data model but at least with respect to the schema, making synchronization and propagation of data a daunting task. Our goal is to cope with this situation in a best-effort manner. To meet this claim, we introduce a symmetric instance-level matching approach that allows to establish mappings without any user interaction, schema information or dictionaries and ontologies. In awareness of dealing with inexact and incomplete mappings, the quality of the propagation has to be quantified. For this purpose, different quality dimensions like accuracy or completeness are introduced. Additionally, visualizing the quality allows users to evaluate the performance of the data propagation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching Approaches. In: Proceedings of the 28th VLDB Conference, Hong Kong, China, pp. 610–621 (2002)

    Google Scholar 

  2. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proceedings of the 27th VLDB Conference, Rome, Italy, pp. 49–58 (2001)

    Google Scholar 

  3. Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Translation. In: Proceedings of the 24th VLDB Conference, New York City, USA, pp. 122–133 (1998)

    Google Scholar 

  4. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching. In: Proceedings of the 18th International Conference on Data Engineering (ICDE 2002), San Jose, USA, pp. 117–128 (2002)

    Google Scholar 

  5. Wang, Q.Y., Yu, J.X., Wong, K.-F.: Approximate graph schema extraction for semi-structured data. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 302–316. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In: Proceedings of the 2rd VLDB Conference, Athens, Greece, pp. 436–445 (1997)

    Google Scholar 

  7. Mandreoli, F., Martoglia, R., Tiberio, P.: Approximate Query Answering for a Heterogeneous XML Document Base. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K.G. (eds.) WISE 2004. LNCS, vol. 3306, pp. 337–351. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Rahm, E., Bernstein, P.A.: On Matching Schemas Automatically. Technical Report MSR-TR-2001-17, Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 (2001)

    Google Scholar 

  9. Bovee, M., Srivastava, R.P., Mak, B.: A Conceptual Framework and Belief-Function Approach to Assessing Overall Information Quality. International Journal of Intelligent Systems 18(1), 51–74 (2003)

    Article  MATH  Google Scholar 

  10. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: A Methodology for Information Quality Assessment. Information & Management 40, 133–146 (2002)

    Article  Google Scholar 

  11. Martinez, A., Hammer, J.: Making Quality Count in Biological Data Sources. In: Proceedings of the IQIS Workshop, Baltimore, USA, pp. 16–27 (2005)

    Google Scholar 

  12. Motro, A., Rakov, I.: Estimating the Quality of Databases. In: Proceedings of the 3rd FQAS Conference, Roskilde, Denmark, pp. 298–307 (1998)

    Google Scholar 

  13. Naumann, F., Rolker, C.: Do Metadata Models meet IQ Requirements?. In: Proceedings of the 4th IQ Conference, Cambridge, USA, pp. 99–114 (1999)

    Google Scholar 

  14. Naumann, F., Rolker, C.: Assessment Methods for Information Quality Criteria. In: Proceedings of the 5th IQ Conference, Cambridge, USA, pp. 148–162 (2000)

    Google Scholar 

  15. Scannapieco, M., Missier, P., Batini, C.: Data Quality at a Glance. Datenbank-Spektrum 14, 6–14 (2005)

    Google Scholar 

  16. Tayi, G.K., Ballou, D.P.: Examining Data Quality - Introduction. Communications of the ACM 41(2), 54–57 (1998)

    Article  Google Scholar 

  17. Pipino, L., Lee, Y.W., Wang, R.Y.: Data Quality Assessment. Communications of the ACM 45(4), 211–218 (2002)

    Article  Google Scholar 

  18. Naumann, F.: From Databases to Information Systems - Information Quality Makes the Difference. In: Proceedings of the 6th IQ Conference, Cambridge, USA, pp. 244–260 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rösch, P. (2006). Tolerant Ad Hoc Data Propagation with Error Quantification. In: Grust, T., et al. Current Trends in Database Technology – EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 4254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11896548_3

Download citation

  • DOI: https://doi.org/10.1007/11896548_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46788-5

  • Online ISBN: 978-3-540-46790-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics