Abstract
We consider the problem of learning unions of rectangles over the domain [b]n, in the uniform distribution membership query learning setting, where both b and n are “large”. We obtain poly(n, logb)-time algorithms for the following classes:
– poly (n logb)-Majority of \(O(\frac{\log(n \log b)} {\log \log(n \log b)})\)-dimensional rectangles.
–Unions of poly(log(n logb)) many rectangles with dimension
\(O(\frac{\log^2 (n \log b)} {(\log \log(n \log b) \log \log \log (n \log b))^2})\).
– poly (n logb)-Majority of poly (n logb)-Or of disjoint rectangles
with dimension \(O(\frac{\log(n \log b)} {\log \log(n \log b)})\)
Our main algorithmic tool is an extension of Jackson’s boosting- and Fourier-based Harmonic Sieve algorithm [13] to the domain [b]n, building on work of Akavia et al. [1]. Other ingredients used to obtain the results stated above are techniques from exact learning [4] and ideas from recent work on learning augmented AC 0 circuits [14] and on representing Boolean functions as thresholds of parities [16].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akavia, A., Goldwasser, S., Safra, S.: Proving Hard Core Predicates Using List Decoding. In: Proc. 44th IEEE Found. Comp. Sci., pp. 146–156 (2003)
Aizenstein, H., Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On Learning Read-k Satisfy-j DNF. SIAM Journal on Computing 27(6), 1515–1530 (1998)
Atıcı, A., Servedio, R.: Learning Unions of ω(1)-Dimensional Rectangles, available at: http://arxiv.org/abs/cs.LG/0510038
Beimel, A., Kushilevitz, E.: Learning Boxes in High Dimension. Algorithmica 22(1/2), 76–90 (1998)
Bruck, J.: Harmonic Analysis of Polynomial Threshold Functions. SIAM Journal on Discrete Mathematics 3(2), 168–177 (1990)
Chen, Z., Homer, S.: The Bounded Injury Priority Method and The Learnability of Unions of Rectangles. Annals of Pure and Applied Logic 77(2), 143–168 (1996)
Chen, Z., Maass, W.: On-line Learning of Rectangles and Unions of Rectangles. Machine Learning 17(2/3), 23–50 (1994)
Freund, Y.: Boosting a Weak Learning Algorithm by Majority. Information and Computation 121(2), 256–285 (1995)
Freund, Y., Schapire, R.: A Short Introduction to Boosting. Journal of the Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)
Goldberg, P.W., Goldman, S.A., Mathias, H.D.: Learning Unions of Boxes with Membership and Equivalence Queries. In: COLT 1994: Proc. of the 7th annual conference on computational learning theory, pp. 198–207 (1994)
Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turan, G.: Threshold Circuits of Bounded Depth. J. Comp. & Syst. Sci. 46, 129–154 (1993)
Håstad, J.: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, MA (1986)
Jackson, J.C.: An Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform Distribution. J. Comp. & Syst. Sci. 55(3), 414–440 (1997)
Jackson, J.C., Klivans, A.R., Servedio, R.A.: Learnability Beyond AC 0. In: Proc. of the 34th annual ACM symposium on theory of computing (STOC), pp. 776–784 (2002)
Khardon, R.: On Using the Fourier Transform to Learn Disjoint DNF. Information Processing Letters 49(5), 219–222 (1994)
Klivans, A.R., Servedio, R.A.: Learning DNF in Time \(2^{\tilde{O}(n^{1/3})}\). J. Comp. & Syst. Sci. 68(2), 303–318 (2004)
Krause, M., Pudlák, P.: Computing Boolean Functions by Polynomials and Threshold Circuits. Computational Complexity 7(4), 346–370 (1998)
Kushilevitz, E., Mansour, Y.: Learning Decision Trees using the Fourier Spectrum. SIAM Journal on Computing 22(6), 1331–1348 (1993)
Maass, W., Warmuth, M.K.: Efficient Learning with Virtual Threshold Gates. Information and Computation 141(1), 66–83 (1998)
Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Atıcı, A., Servedio, R.A. (2006). Learning Unions of ω(1)-Dimensional Rectangles. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_7
Download citation
DOI: https://doi.org/10.1007/11894841_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46649-9
Online ISBN: 978-3-540-46650-5
eBook Packages: Computer ScienceComputer Science (R0)