[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Unions of ω(1)-Dimensional Rectangles

  • Conference paper
Algorithmic Learning Theory (ALT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4264))

Included in the following conference series:

Abstract

We consider the problem of learning unions of rectangles over the domain [b]n, in the uniform distribution membership query learning setting, where both b and n are “large”. We obtain poly(n, logb)-time algorithms for the following classes:

– poly (n logb)-Majority of \(O(\frac{\log(n \log b)} {\log \log(n \log b)})\)-dimensional rectangles.

–Unions of poly(log(n logb)) many rectangles with dimension

\(O(\frac{\log^2 (n \log b)} {(\log \log(n \log b) \log \log \log (n \log b))^2})\).

– poly (n logb)-Majority of poly (n logb)-Or of disjoint rectangles

with dimension \(O(\frac{\log(n \log b)} {\log \log(n \log b)})\)

Our main algorithmic tool is an extension of Jackson’s boosting- and Fourier-based Harmonic Sieve algorithm [13] to the domain [b]n, building on work of Akavia et al. [1]. Other ingredients used to obtain the results stated above are techniques from exact learning [4] and ideas from recent work on learning augmented AC 0 circuits [14] and on representing Boolean functions as thresholds of parities [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard Core Predicates Using List Decoding. In: Proc. 44th IEEE Found. Comp. Sci., pp. 146–156 (2003)

    Google Scholar 

  2. Aizenstein, H., Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On Learning Read-k Satisfy-j DNF. SIAM Journal on Computing 27(6), 1515–1530 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atıcı, A., Servedio, R.: Learning Unions of ω(1)-Dimensional Rectangles, available at: http://arxiv.org/abs/cs.LG/0510038

  4. Beimel, A., Kushilevitz, E.: Learning Boxes in High Dimension. Algorithmica 22(1/2), 76–90 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruck, J.: Harmonic Analysis of Polynomial Threshold Functions. SIAM Journal on Discrete Mathematics 3(2), 168–177 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Z., Homer, S.: The Bounded Injury Priority Method and The Learnability of Unions of Rectangles. Annals of Pure and Applied Logic 77(2), 143–168 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, Z., Maass, W.: On-line Learning of Rectangles and Unions of Rectangles. Machine Learning 17(2/3), 23–50 (1994)

    Article  Google Scholar 

  8. Freund, Y.: Boosting a Weak Learning Algorithm by Majority. Information and Computation 121(2), 256–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freund, Y., Schapire, R.: A Short Introduction to Boosting. Journal of the Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  10. Goldberg, P.W., Goldman, S.A., Mathias, H.D.: Learning Unions of Boxes with Membership and Equivalence Queries. In: COLT 1994: Proc. of the 7th annual conference on computational learning theory, pp. 198–207 (1994)

    Google Scholar 

  11. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turan, G.: Threshold Circuits of Bounded Depth. J. Comp. & Syst. Sci. 46, 129–154 (1993)

    Article  MATH  Google Scholar 

  12. Håstad, J.: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  13. Jackson, J.C.: An Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform Distribution. J. Comp. & Syst. Sci. 55(3), 414–440 (1997)

    Article  MATH  Google Scholar 

  14. Jackson, J.C., Klivans, A.R., Servedio, R.A.: Learnability Beyond AC 0. In: Proc. of the 34th annual ACM symposium on theory of computing (STOC), pp. 776–784 (2002)

    Google Scholar 

  15. Khardon, R.: On Using the Fourier Transform to Learn Disjoint DNF. Information Processing Letters 49(5), 219–222 (1994)

    Article  MATH  Google Scholar 

  16. Klivans, A.R., Servedio, R.A.: Learning DNF in Time \(2^{\tilde{O}(n^{1/3})}\). J. Comp. & Syst. Sci. 68(2), 303–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krause, M., Pudlák, P.: Computing Boolean Functions by Polynomials and Threshold Circuits. Computational Complexity 7(4), 346–370 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kushilevitz, E., Mansour, Y.: Learning Decision Trees using the Fourier Spectrum. SIAM Journal on Computing 22(6), 1331–1348 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Maass, W., Warmuth, M.K.: Efficient Learning with Virtual Threshold Gates. Information and Computation 141(1), 66–83 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atıcı, A., Servedio, R.A. (2006). Learning Unions of ω(1)-Dimensional Rectangles. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_7

Download citation

  • DOI: https://doi.org/10.1007/11894841_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46649-9

  • Online ISBN: 978-3-540-46650-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics