[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Text Data Clustering by Contextual Graphs

  • Conference paper
Discovery Science (DS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4265))

Included in the following conference series:

Abstract

In this paper, we focus on the class of graph-based clustering models, such as growing neural gas or idiotypic nets for the purpose of high-dimensional text data clustering. We present a novel approach, which does not require operation on the complex overall graph of clusters, but rather allows to shift majority of effort to context-sensitive, local subgraph and local sub-space processing. Savings of orders of magnitude in processing time and memory can be achieved, while the quality of clusters is improved, as presented experiments demonstrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C., Pal, S.K.: Fuzzy Models for Pattern Recognition: Methods that Search for Structures in Data. IEEE, New York (1992)

    Google Scholar 

  2. Ciesielski, K., Draminski, M., Klopotek, M., Kujawiak, M., Wierzchon, S.: Mapping document collections in non-standard geometries. In: De Beats, B., De Caluwe, R., de Tre, G., Fodor, J., Kacprzyk, J., Zadrony, S. (eds.) Current Issues in Data and Knowledge Engineering, pp. 122–132. Akademicka Oficyna Wydawnicza EXIT Publishing, Warszawa (2004)

    Google Scholar 

  3. Ciesielski, K., Wierzchoń, S.T., Kłopotek, M.A.: An Immune Network for Contextual Text Data Clustering. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 432–445. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Dittenbach, M., Rauber, A., Merkl, D.: Uncovering hierarchical structure in data using the Growing Hierarchical Self-Organizing Map. Neurocomputing 48(1-4), 199–216 (2002)

    Article  MATH  Google Scholar 

  5. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, New York (1999)

    Google Scholar 

  6. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  7. Fritzke, B.: A self-organizing network that can follow non-stationary distributions. In: Fritzke, B. (ed.) Proceeding of the International Conference on Artificial Neural Networks 1997, pp. 613–618. Springer, Heidelberg (1997)

    Google Scholar 

  8. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of Intelligent Information Systems 17(2-3), 107–145 (2001)

    Article  MATH  Google Scholar 

  9. Hung, C., Wermter, S.: A constructive and hierarchical self-organising model in a non-stationary environment. In: International Joint Conference in Neural Networks (2005)

    Google Scholar 

  10. Klopotek, M., Draminski, M., Ciesielski, K., Kujawiak, M., Wierzchon, S.T.: Mining document maps. In: Gori, M., Celi, M., Nanni, M. (eds.) Proceedings of Statistical Approaches to Web Mining Workshop (SAWM) at PKDD 2004, Pisa, pp. 87–98 (2004)

    Google Scholar 

  11. Klopotek, M., Wierzchon, S., Ciesielski, K., Draminski, M., Czerski, D.: Conceptual maps and intelligent navigation in document space, monography. Akademicka Oficyna Wydawnicza EXIT Publishing, Warszawa (to appear, 2006)

    Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Kohonen, T., Kaski, S., Somervuo, P., Lagus, K., Oja, M., Paatero, V.: Self-organization of very large document collections, Helsinki University of Technology technical report (2003), http://www.cis.hut.fi/research/reports/biennial02-03

  14. Rauber, A.: Cluster Visualization in Unsupervised Neural Networks. Diplomarbeit, Technische Universität Wien, Austria (1996)

    Google Scholar 

  15. Zhao, Y., Karypis, G.: Criterion functions for document clustering: Experiments and analysis, available at: http://www.users.cs.umn.edu/~karypis/publications/ir.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciesielski, K., Kłopotek, M.A. (2006). Text Data Clustering by Contextual Graphs. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds) Discovery Science. DS 2006. Lecture Notes in Computer Science(), vol 4265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893318_10

Download citation

  • DOI: https://doi.org/10.1007/11893318_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46491-4

  • Online ISBN: 978-3-540-46493-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics