Abstract
Most contemporary multi-objective evolutionary algorithms (MOEAs) have high computational demand. In this paper, a new MOEA based on objective space divided named SDMOGA is proposed. SDMOGA transforms the Pareto ranking into the sum of interval index ranking among individuals in objective space divided, and uses a method of individual crowding operator similar to adaptive grid to keep population diversity. Experimental results on four nicely balance functions show that SDMOGA has high efficiency, low run-time complexity and good convergence.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello, C.A.C.: A Short Tutorial on Evolutionary Multiobjective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. LNCS, pp. 21–40. Springer, Heidelberg (2001)
Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8(2), 125–147 (2000)
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory(TIK), Swiss Federal Institute of Technology(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (May 2001)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Coello, C.A.C., Pulido, G.T.: A Micro-Genetic Algorithm for Multiobjective Optimization. In: Zitzler, K., Deb, L., Thiele, C.A.C., Coello, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. LNCS, pp. 126–140. Springer, Heidelberg (2001)
Coello, C.A.C.: An Updated Survey of Evolutionary Multiobjective Optimization Techniques:State of the Art and Future Trends. In: 1999 Congress on Evolutionary Computation, Washington, D.C, July 1999, vol. 1, pp. 3–13 (1999)
Coello, C.A.C.: Evolutionary Multiobjective Optimization: Current and Future Challenged. In: Benitez, J., Cordon, O., Hoffmann, F., Roy, R. (eds.) Advances in Soft Computing—Engineering, Design and Manufacturing, September 2003, pp. 243–256. Springer, Heidelberg (2003)
Fieldsend, J.E., Everson, R.M., Singh, S.: Using Unconstrained Elite Archives for Multi-Objective Optimisation. TIEEE Transactions on Evolutionary ComputationT 7(3), 305–323 (2003)
Deb, K.: Multi-Objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation 7(30), 205–230 (1999)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA - A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, W., Shifu, C., Zhaoqian, C. (2006). SDMOGA: A New Multi-objective Genetic Algorithm Based on Objective Space Divided. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_83
Download citation
DOI: https://doi.org/10.1007/11893295_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46484-6
Online ISBN: 978-3-540-46485-3
eBook Packages: Computer ScienceComputer Science (R0)