[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SDMOGA: A New Multi-objective Genetic Algorithm Based on Objective Space Divided

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

  • 1677 Accesses

Abstract

Most contemporary multi-objective evolutionary algorithms (MOEAs) have high computational demand. In this paper, a new MOEA based on objective space divided named SDMOGA is proposed. SDMOGA transforms the Pareto ranking into the sum of interval index ranking among individuals in objective space divided, and uses a method of individual crowding operator similar to adaptive grid to keep population diversity. Experimental results on four nicely balance functions show that SDMOGA has high efficiency, low run-time complexity and good convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C.A.C.: A Short Tutorial on Evolutionary Multiobjective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. LNCS, pp. 21–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8(2), 125–147 (2000)

    Article  Google Scholar 

  3. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)

    Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory(TIK), Swiss Federal Institute of Technology(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (May 2001)

    Google Scholar 

  5. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Coello, C.A.C., Pulido, G.T.: A Micro-Genetic Algorithm for Multiobjective Optimization. In: Zitzler, K., Deb, L., Thiele, C.A.C., Coello, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. LNCS, pp. 126–140. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Coello, C.A.C.: An Updated Survey of Evolutionary Multiobjective Optimization Techniques:State of the Art and Future Trends. In: 1999 Congress on Evolutionary Computation, Washington, D.C, July 1999, vol. 1, pp. 3–13 (1999)

    Google Scholar 

  9. Coello, C.A.C.: Evolutionary Multiobjective Optimization: Current and Future Challenged. In: Benitez, J., Cordon, O., Hoffmann, F., Roy, R. (eds.) Advances in Soft Computing—Engineering, Design and Manufacturing, September 2003, pp. 243–256. Springer, Heidelberg (2003)

    Google Scholar 

  10. Fieldsend, J.E., Everson, R.M., Singh, S.: Using Unconstrained Elite Archives for Multi-Objective Optimisation. TIEEE Transactions on Evolutionary ComputationT 7(3), 305–323 (2003)

    Article  Google Scholar 

  11. Deb, K.: Multi-Objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation 7(30), 205–230 (1999)

    Article  Google Scholar 

  12. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA - A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, W., Shifu, C., Zhaoqian, C. (2006). SDMOGA: A New Multi-objective Genetic Algorithm Based on Objective Space Divided. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_83

Download citation

  • DOI: https://doi.org/10.1007/11893295_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics