[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving the Generalization of Fisherface by Training Class Selection Using SOM2

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

Fisherface is a popular subspace algorithm used in face recognition, and is commonly believed superior to another technique, Eigenface, due to its attempt to maximize the separability of training classes. However, the obtained discriminating subspace of the training set may not easily extend to unseen classes (thus poor generalization), as in the case of enrollment of new subjects. In this paper, we reduce the performance variance and improve the generalization of Fisherface by automatically selecting some representative classes for training, using a recently proposed neural network architecture SOM2. The experiments on ORL face database validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matthew, A.T., Alex, P.P.: Face Recognition Using Eigenfaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

  2. Peter, N.B., Joao, P.H., David, J.K.: Eigenface vs. Fisherface: Recognition Using Class Specific Linear Projection. IEEE Trans. on Pattern Anal. Machine Intell. 19, 711–720 (1997)

    Article  Google Scholar 

  3. Aleix, M.M., Avinash, C.K.: PCA versus LDA. IEEE Trans. on Pattern Anal. Machine Intell. 23, 228–233 (2001)

    Article  Google Scholar 

  4. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans. on Pattern Anal. Machine Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  5. Bo, C., Shiguang, S., Xiaohua, Z., Wen, G.: Baseline Evaluations on the CAS-PEAL-R1 Face Database. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 370–378. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Tetsuo, F.: SOM of SOMs: Self-organizing Map Which Maps a Group of Self-organizing Maps. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 391–396. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Tetsuo, F.: SOM2 As “SOM of SOMs”. In: Proc. WSOM (2005)

    Google Scholar 

  8. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: “Neural-Gas” Network for Vector Quantization and its Application to Time-Series Prediction. IEEE Trans. on Neural Networks 4, 558–569 (1993)

    Article  Google Scholar 

  9. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  10. Phillips, P.J., Flynn, P.J., Scruggs, T., et al.: Overview of the Face Recognition Grand Challenge. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 947–954 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, J., Zhang, L., Furukawa, T. (2006). Improving the Generalization of Fisherface by Training Class Selection Using SOM2 . In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_31

Download citation

  • DOI: https://doi.org/10.1007/11893257_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics