[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Hierarchical Decision Structure Using Wavelet Packet and SVM for Brazilian Phonemes Recognition

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

In this work, a new phonemes recognition system is proposed. The base of decision of the proposed system is the tongue position and roundedness of the lips. The features of the speech are the coefficients of Wavelet Packet Transform with sub-bands selected through the Mel scale. The SVM (Support Vector Machine) is used as classifier in the structure of a Hierarchical Committee Machine. The database used for the recognition was a set of oral vocalic phonemes of the Portuguese language. The experimental results show success rates of 97.50% for the user-dependent case and 91.01% for the user-independent case. This new proposal increased 3.5% the success rate in relation to the “one vs. all” decision strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burrus, S.C., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelets Transforms. Prentice Hall, New Jersey (1998)

    Google Scholar 

  2. Daubechies, I.: The Wavelet Transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 961–1005 (1990)

    Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. John Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  4. Farooq, O., Datta, S.: Mel filter-like admissible wavelet packet structure for speech recognition. IEEE Signal Processing Letters 08(07), 196–198 (2001)

    Article  Google Scholar 

  5. Gowdy, J.N., Tufekci, Z.: Mel-scaled discrete wavelet coefficients for speech recognition. In: Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1351–1354 (2000)

    Google Scholar 

  6. Haykin, S.: Redes Neurais, Princípios e prática. 2a Edição, Porto Alegre, Editora Bookman (2001)

    Google Scholar 

  7. Hosom, J.P.: Automatic Phoneme Alignment Based on Acoustic-Phonetic Modeling. In: International Conference on Spoken Language Processing-ICSLP 2002, September 2002, vol. I, pp. 357–360. Boulder, Co. (2002)

    Google Scholar 

  8. Juneja, A., Espy-Wilson, C.: Speech segmentation using probabilistic phonetic feature hierarchy and support vector machines. In: Proceedings of International Joint Conference on Neural Networks, Portland, Oregan (2003)

    Google Scholar 

  9. Russell, M.J., Bilmes, J.A.: Introduction to the special issue on new computational paradigms for acoustic modeling in speech recognition. Editorial, Computer Speech and Language 17, 107–112 (2003)

    Article  Google Scholar 

  10. Santos, S.C., Alcaim, A.: Sílabas como unidades fonéticas para o reconhecimento de voz em português. SBA Controle & Automação 12(01) (2001)

    Google Scholar 

  11. Silva, T.C.: Fonética e Fonologia do Português. 7º Edição, Paulo, S. (ed.) Contexto (2003)

    Google Scholar 

  12. Stevens, S.S., Volkman, J., e Newman, E.B.: A Scale for Measurement of the Psychological Magnitude Picth. Journal of the Acoustical Society of America 08, 185–190 (1937)

    Article  Google Scholar 

  13. Vapnik, V.N.: Principles of risk minimization for learning theory. Advances in Neural Information Processing Systems 04, 831–838 (1992)

    Google Scholar 

  14. Young, S.: A Review of Large-Vocabulary Continuous-Speech Recognition. IEEE Signal Processing Magazine, 45–57 (September 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de A. Bresolin, A., Neto, A.D.D., Alsina, P.J. (2006). A New Hierarchical Decision Structure Using Wavelet Packet and SVM for Brazilian Phonemes Recognition. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_18

Download citation

  • DOI: https://doi.org/10.1007/11893257_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics