[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Forecasting Electricity Demand by Hybrid Machine Learning Model

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

This paper proposes a hybrid machine learning model for electricity demand forecasting, based on Bayesian Clustering by Dynamics (BCD) and Support Vector Machine (SVM). In the proposed model, a BCD classifier is firstly applied to cluster the input data set into several subsets by the dynamics of load series in an unsupervised manner, and then, groups of 24 SVMs for the next day’s electricity demand curve are used to fit the training data of each subset. In the numerical experiment, the proposed model has been trained and tested on the data of the historical load from New York City.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hippert, H.S., Pedreira, C.E., So, R.C.: Neural Networks for Short-Term Load Forecasting: A Review and Evaluation. IEEE Trans. Power Systems 16, 44–55 (2001)

    Article  Google Scholar 

  2. Haida, T., Muto, S.: Regression based peak load forecasting using a transformation technique. IEEE Trans. Power Systems 9, 1788–1794 (1994)

    Article  Google Scholar 

  3. Huang, S.J., Shih, K.R.: Short-term load forecasting via ARMA model identification including nongaussian process considerations. IEEE Trans. Power Systems 18, 673–679 (2003)

    Article  Google Scholar 

  4. Box, G.E.P., Jenkins, G.M.: Time series analysis – forecasting and control. Holden-day, San Francisco (1976)

    MATH  Google Scholar 

  5. Czernichow, T., Piras, A., Imhof, K., Caire, P., Jaccard, Y., Dorizzi, B., Germond, A.: Short term electrical load forecasting with artificial neural networks. Engineering Intelligent Systems 2, 85–99 (1996)

    Google Scholar 

  6. Fan, S., Mao, C.X., Chen, L.N.: Peak Load Forecasting Using the Self-organizing Map. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 640–647. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Song, K.B., Baek, Y.S., Hong, D.H., Jang, G.: Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Trans. Power Systems 20, 96–101 (2005)

    Article  Google Scholar 

  8. Fidalgo, J.N., Pecas Lopes, J.A.: Load forecasting performance enhancement when facing anomalous events. IEEE Trans. Power Systems 20, 408–415 (2005)

    Article  Google Scholar 

  9. Chen, B.-J., Chang, M.-W., Lin, C.-J.: Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans. Power Systems 19, 1821–1830 (2004)

    Article  Google Scholar 

  10. Fan, S., Chen, L.: Short-Term Load Forecasting Based on an Adaptive Hybrid Method. IEEE Trans. Power Systems. 21, 392–401 (2006)

    Article  Google Scholar 

  11. Ramoni, M., Sebastiani, P., Cohen, P.: Bayesian Clustering by Dynamics. Machine Learning 47, 91–121 (2002)

    Article  MATH  Google Scholar 

  12. Sebastiani, P., Ramoni, M.: Clustering continuous time series. In: Proc. Eighteenth Int’l Conf. on Machine Learning (ICML-2001), pp. 497–504 (2001)

    Google Scholar 

  13. Online, http://www.nyiso.com

  14. Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  15. Cristianini, N., Shawe-Tylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for Support Vector Machines (2001), online available: http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, S., Mao, C., Zhang, J., Chen, L. (2006). Forecasting Electricity Demand by Hybrid Machine Learning Model. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_105

Download citation

  • DOI: https://doi.org/10.1007/11893257_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics