[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Competitive Co-evolving Support Vector Clustering

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

  • 994 Accesses

Abstract

The goal of clustering is to cluster the objects into groups that are internally homogeneous and heterogeneous from group to group. Clustering is an important tool for diversely intelligent systems. So, many works have been researched in the machine learning algorithms. But, some problems are still shown in the clustering. One of them is to determine the optimal number of clusters. In K-means algorithm, the number of cluster K is determined by the art of researchers. Another problem is an over fitting of learning models. The majority of learning algorithms for clustering are not free from the problem. Therefore, we propose a competitive co-evolving support vector clustering. Using competitive co-evolutionary computing, we overcome the over fitting problem of support vector clustering which is a good learning model for clustering. The number of clusters is efficiently determined by our competitive co-evolving support vector clustering. To verify the improved performances of our research, we compare competitive co-evolving support vector clustering with established clustering methods using the data sets form UCI machine learning repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2, 125–137 (2001)

    Article  Google Scholar 

  2. Bezdek, J.C., Boggavarapu, S., Hall, L.O., Bensaid, A.: Genetic algorithm guided clustering. IEEE World Congress on Computational Intelligence 1, 34–39 (1994)

    Article  Google Scholar 

  3. Bock, H.H.: On Some Significance Tests in Cluster Analysis. Journal of Classification 2, 77–108 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burges, C.J.: A Tutorial on Support Vector Machine for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  5. Cherkassky, V., Mulier, F.: Learning from Data - Concepts, Theory, and Methods. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  6. Chiang, J.C., Wang, J.S.: A Validity-Guided Support Vector Clustering Algorithm for Identification of Optimal Cluster Configuration. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3613–3618 (2004)

    Google Scholar 

  7. Davison, A.C.: Bootstrap methods and their application. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  9. Everitt, B.S.: Unresolved Problems in Cluster Analysis. Biometrics 35, 169–181 (1979)

    Article  MATH  Google Scholar 

  10. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, Arnold (2001)

    Google Scholar 

  11. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, Chichester (1989)

    Google Scholar 

  12. Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  13. Hartigan, J.A.: Statistical Theory in Clustering. Journal of Classification 2, 63–76 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haykin, S.: Neural Networks. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  15. Jun, S.H.: Web Usage Mining Using Support Vector Machine. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 349–356. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Lee, J., Lee, D.: An Improved Cluster Labeling Method for Support Vector Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 461–464 (2005)

    Article  Google Scholar 

  17. Ling, P., Wang, Y., Lu, N., Wang, J.Y., Liang, S., Zhou, C.G.: Two-Phase Support Vector Clustering for Multi-Relational Data Mining. In: Proceedings of the International Conference on Cyberworlds (2005)

    Google Scholar 

  18. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  19. Mitchell, T.M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Ribeiro, B.: On Data Based Learning using Support Vector Clustering. In: Proceedings of the 9th International Conference on Neural Information Processing, vol. 5, pp. 2516–2521 (2002)

    Google Scholar 

  21. Sun, B.Y., Huang, D.S.: Support Vector Clustering for Multiclass Classification Problems. IEEE Evolutionary Computation Congress 2, 1480–1485 (2003)

    Google Scholar 

  22. Tax, D.M.J., Duin, R.P.W.: Support Vector Domain Description. Pattern Recognition Letters 20, 1191–1199 (1999)

    Article  Google Scholar 

  23. UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html

  24. Vapnik, V.Z.: Statistical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  25. Vapnik, V.: An Overview of Statistical Learning Theory. IEEE Transactions Networks 10, 903–988 (2002)

    Google Scholar 

  26. Wang, J., Wu, X., Zhang, C.: Support vector machine based on K-means clustering for real-time business intelligence systems. International Journal of Business Intelligence and Data Mining 1(1), 54–64 (2005)

    Article  MathSciNet  Google Scholar 

  27. Yang, J., Estivill-Castro, V., Chalup, S.K.: Support Vector Clustering Through Proximity Graph Modeling. In: Proceedings of Ninth International Conference of Neural Information Processing, pp. 898–903 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jun, SH., Oh, KW. (2006). A Competitive Co-evolving Support Vector Clustering. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_96

Download citation

  • DOI: https://doi.org/10.1007/11893028_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics