Abstract
The application of kernel method to petrochemical industry is explored in this paper. A nonlinear soft analyzer for the flashpoint measurement of Dearomatization process is developed by using kernel principal component regression (KPCR) method. To trace the time varying dynamics and reject disturbances, a novel online eigenspace decomposing algorithm is proposed to update that of the Kernel Matrix, which is much faster than direct decomposition and meanwhile has stable numerical performance. Simulation results indicate the developed soft analyzer has satisfying prediction precision under both nominal and faulty operating conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yeh, T.M., Huang, C.T.: Estimate of Process Compositions and Plantwide Control From Multiple Secondary Measurements Using Artificial Neural Networks. Comput. Chem. Engng. 27, 55–72 (2003)
Komulainen, T., Sourander, M., Jämsä-Jounela, S.-L.: An Online Application of Dynamic PLS to a Dearomatization Process. Comput. Chem. Engng. 28, 2611–2619 (2004)
Wang, H.Q., Song, Z.H., Li, P., Ding, S.X.: AKL Networks for Industrial Analyzer Modeling and Fault Detection. In: The 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (safeprocess) (2006) (to appear)
Liikala, T.: The Use of Fault Detection in Model Predictive Control of a Refinery Process Unit. Master of Science (Tech.) Thesis, Helsinki University of Technology (2005)
Sjöberg, J., Zhang, Q.H., Benveniste, A., et al.: Nonlinear Black-box Modeling in System Identification: a Unified Overview. Automatic 31, 1691–1724 (1995)
Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)
Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, UK (2004)
Hoegaerts, L., De Lathauwer, L., Goethals, I., Suykens, J.A.K., Vandewalle, J., De Moor, B.: Efficiently Updating and Tracking the Dominant Kernel Principal Components, Internal Report 05-01, ESAT-SISTA, K.U. Leuven, Belgium (2005)
Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)
Blanchard, G., Bousquet, O., Zwald, L.: Statistical Properties of Kernel Principal Component Analysis. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 594–608. Springer, Heidelberg (2004)
Taylor, J., Williams, C., Cristianini, N., Kandola, J.: On the Eigenspectrum of the Gram Matrix and the Generalization Error of Kernel PCA. IEEE Transactions on Information Theory 51, 2510–2522 (2005)
Rosipal, R., Trejo, L.J., Cichocki, A.: Kernel Principal Component Regression with EM Approach to Nonlinear Principal Components Extraction. Technical report, CIS, University of Paisley (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Pi, D., Jiang, N., Ding, S.X. (2006). Soft Analyzer Modeling for Dearomatization Unit Using KPCR with Online Eigenspace Decomposition. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_55
Download citation
DOI: https://doi.org/10.1007/11893028_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46479-2
Online ISBN: 978-3-540-46480-8
eBook Packages: Computer ScienceComputer Science (R0)