[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Soft Analyzer Modeling for Dearomatization Unit Using KPCR with Online Eigenspace Decomposition

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

  • 1473 Accesses

Abstract

The application of kernel method to petrochemical industry is explored in this paper. A nonlinear soft analyzer for the flashpoint measurement of Dearomatization process is developed by using kernel principal component regression (KPCR) method. To trace the time varying dynamics and reject disturbances, a novel online eigenspace decomposing algorithm is proposed to update that of the Kernel Matrix, which is much faster than direct decomposition and meanwhile has stable numerical performance. Simulation results indicate the developed soft analyzer has satisfying prediction precision under both nominal and faulty operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yeh, T.M., Huang, C.T.: Estimate of Process Compositions and Plantwide Control From Multiple Secondary Measurements Using Artificial Neural Networks. Comput. Chem. Engng. 27, 55–72 (2003)

    Article  Google Scholar 

  2. Komulainen, T., Sourander, M., Jämsä-Jounela, S.-L.: An Online Application of Dynamic PLS to a Dearomatization Process. Comput. Chem. Engng. 28, 2611–2619 (2004)

    Article  Google Scholar 

  3. Wang, H.Q., Song, Z.H., Li, P., Ding, S.X.: AKL Networks for Industrial Analyzer Modeling and Fault Detection. In: The 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (safeprocess) (2006) (to appear)

    Google Scholar 

  4. Liikala, T.: The Use of Fault Detection in Model Predictive Control of a Refinery Process Unit. Master of Science (Tech.) Thesis, Helsinki University of Technology (2005)

    Google Scholar 

  5. Sjöberg, J., Zhang, Q.H., Benveniste, A., et al.: Nonlinear Black-box Modeling in System Identification: a Unified Overview. Automatic 31, 1691–1724 (1995)

    Article  MATH  Google Scholar 

  6. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  7. Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, UK (2004)

    Google Scholar 

  8. Hoegaerts, L., De Lathauwer, L., Goethals, I., Suykens, J.A.K., Vandewalle, J., De Moor, B.: Efficiently Updating and Tracking the Dominant Kernel Principal Components, Internal Report 05-01, ESAT-SISTA, K.U. Leuven, Belgium (2005)

    Google Scholar 

  9. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Blanchard, G., Bousquet, O., Zwald, L.: Statistical Properties of Kernel Principal Component Analysis. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 594–608. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Taylor, J., Williams, C., Cristianini, N., Kandola, J.: On the Eigenspectrum of the Gram Matrix and the Generalization Error of Kernel PCA. IEEE Transactions on Information Theory 51, 2510–2522 (2005)

    Article  Google Scholar 

  13. Rosipal, R., Trejo, L.J., Cichocki, A.: Kernel Principal Component Regression with EM Approach to Nonlinear Principal Components Extraction. Technical report, CIS, University of Paisley (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Pi, D., Jiang, N., Ding, S.X. (2006). Soft Analyzer Modeling for Dearomatization Unit Using KPCR with Online Eigenspace Decomposition. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_55

Download citation

  • DOI: https://doi.org/10.1007/11893028_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics