Abstract
In this paper we propose a simple and efficient method for computing accurate estimates (in closed form) of the first passage time density of the Ornstein-Uhlenbeck neuronal model through a fixed boundary (i.e. the interspike statistics of the stochastic leaky integrate-and-fire neuron model). This new approach can also provide very tight upper and lower bounds (in closed form) for the exact first passage time density in a systematic manner. Unlike previous approximate analytical attempts, this novel approximation scheme not only goes beyond the linear response and weak noise limit, but it can also be systematically improved to yield the exact results. Furthermore, it is straightforward to extend our approach to study the more general case of a deterministically modulated boundary.
Erratum: The corrected version of this paper can be found on page 1155.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989)
Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)
Maršálek, P., Koch, C., Maunsell, J.: On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. USA 94, 735–740 (1997)
Troyer, T.W., Miller, K.D.: Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell. Neural Computation 9, 971–983 (1997)
Bugmann, G., Christodoulou, C., Taylor, J.G.: Role of the Temporal Integration and Fluctuation Detection in the Highly Irregular Firing of a Leaky Integrator Neuron with Partial Reset. Neural Computation 9, 985–1000 (1997)
Feng, J.: Behaviors of Spike Output Jitter in the Integrate-and-Fire Model. Phys. Rev. Lett. 79, 4505–4508 (1997)
Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B.: Synaptic depression and cortical gain control. Science 275, 220–223 (1997)
Lansky, P.: On approximations of Stein’s neuronal model. J. Theor. Biol. 107, 631–647 (1984)
Alili, L., Patie, P., Pedersen, J.L.: Representations of first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21, 967–980 (2005)
Bulsara, A.R., Elston, T.C., Doering, C.R., Lowen, S.B., Lindenberg, K.: Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics. Phys. Rev. E 53, 3958–3969 (1996)
Plesser, H.E., Gerstner, W.: Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neurocomputing 32-33, 219–224 (2000)
Plesser, H.E., Geisel, Y.: Bandpass properties of integrate-fire neurons. Phys Rev E 59, 7008–7017 (1999)
Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)
Lindner, B., Schimansky-Geier, L.: Transmission of Noise Coded versus Additive Signals through a Neuronal Ensemble. Phys. Rev. Lett. 86, 2934–2937 (2001)
Fourcaud, N., Brunel, N.: Dynamics of the Firing Probability of Noisy Integrateand- Fire Neurons. Neural Comput. 14, 2057–2110 (2002)
Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)
Jung, P., Hänggi, P.: Amplification of small signals via stochastic resonance. Phys. Rev. A 44, 8032–8042 (1991)
Shneidman, V.A., Jung, P., Hänggi, P.: Weak-noise limit of stochastic resonance. Phys. Rev. Lett. 72, 2682–2685 (1994)
Lehmann, J., Reimann, P., Hänggi, P.: Surmounting Oscillating Barriers. Phys. Rev. Lett. 84, 1639–1642 (2000)
Nikitin, A., Stocks, N.G., Bulsara, A.R.: Phys. Rev. E 68, 016103 (2003)
Casado-Pascual, J., Gomez-Ordonez, J., Morillo, M., Hänggi, P.: Two-State Theory of Nonlinear Stochastic Resonance. Phys. Rev. Lett. 91, 210601 (2003)
Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. Springer, Berlin (2003)
Lo, C.F., Lee, H.C., Hui, C.H.: A simple approach for pricing barrier options with time-dependent parameters. Quant. Finance 3, 98–107 (2003)
Lo, C.F., Tang, H.M., Ku, K.C., Hui, C.H.: Valuation of CEV barrier options with time-dependent model parameters. In: Proceedings of the 2nd IASTED International Conference on Financial Engineering and Applications, Cambridge, MA, USA, November 8-10, pp. 34–39 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lo, C.F., Chung, T.K. (2006). First Passage Time Problem for the Ornstein-Uhlenbeck Neuronal Model. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_37
Download citation
DOI: https://doi.org/10.1007/11893028_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46479-2
Online ISBN: 978-3-540-46480-8
eBook Packages: Computer ScienceComputer Science (R0)