[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

First Passage Time Problem for the Ornstein-Uhlenbeck Neuronal Model

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

  • 1610 Accesses

Abstract

In this paper we propose a simple and efficient method for computing accurate estimates (in closed form) of the first passage time density of the Ornstein-Uhlenbeck neuronal model through a fixed boundary (i.e. the interspike statistics of the stochastic leaky integrate-and-fire neuron model). This new approach can also provide very tight upper and lower bounds (in closed form) for the exact first passage time density in a systematic manner. Unlike previous approximate analytical attempts, this novel approximation scheme not only goes beyond the linear response and weak noise limit, but it can also be systematically improved to yield the exact results. Furthermore, it is straightforward to extend our approach to study the more general case of a deterministically modulated boundary.

Erratum: The corrected version of this paper can be found on page 1155.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989)

    Google Scholar 

  2. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

    Article  Google Scholar 

  3. Maršálek, P., Koch, C., Maunsell, J.: On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. USA 94, 735–740 (1997)

    Article  Google Scholar 

  4. Troyer, T.W., Miller, K.D.: Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell. Neural Computation 9, 971–983 (1997)

    Article  Google Scholar 

  5. Bugmann, G., Christodoulou, C., Taylor, J.G.: Role of the Temporal Integration and Fluctuation Detection in the Highly Irregular Firing of a Leaky Integrator Neuron with Partial Reset. Neural Computation 9, 985–1000 (1997)

    Article  Google Scholar 

  6. Feng, J.: Behaviors of Spike Output Jitter in the Integrate-and-Fire Model. Phys. Rev. Lett. 79, 4505–4508 (1997)

    Article  Google Scholar 

  7. Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B.: Synaptic depression and cortical gain control. Science 275, 220–223 (1997)

    Article  Google Scholar 

  8. Lansky, P.: On approximations of Stein’s neuronal model. J. Theor. Biol. 107, 631–647 (1984)

    Article  Google Scholar 

  9. Alili, L., Patie, P., Pedersen, J.L.: Representations of first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21, 967–980 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bulsara, A.R., Elston, T.C., Doering, C.R., Lowen, S.B., Lindenberg, K.: Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics. Phys. Rev. E 53, 3958–3969 (1996)

    Article  Google Scholar 

  11. Plesser, H.E., Gerstner, W.: Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neurocomputing 32-33, 219–224 (2000)

    Article  Google Scholar 

  12. Plesser, H.E., Geisel, Y.: Bandpass properties of integrate-fire neurons. Phys Rev E 59, 7008–7017 (1999)

    Article  Google Scholar 

  13. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  Google Scholar 

  14. Lindner, B., Schimansky-Geier, L.: Transmission of Noise Coded versus Additive Signals through a Neuronal Ensemble. Phys. Rev. Lett. 86, 2934–2937 (2001)

    Article  Google Scholar 

  15. Fourcaud, N., Brunel, N.: Dynamics of the Firing Probability of Noisy Integrateand- Fire Neurons. Neural Comput. 14, 2057–2110 (2002)

    Article  MATH  Google Scholar 

  16. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Article  Google Scholar 

  17. Jung, P., Hänggi, P.: Amplification of small signals via stochastic resonance. Phys. Rev. A 44, 8032–8042 (1991)

    Article  Google Scholar 

  18. Shneidman, V.A., Jung, P., Hänggi, P.: Weak-noise limit of stochastic resonance. Phys. Rev. Lett. 72, 2682–2685 (1994)

    Article  Google Scholar 

  19. Lehmann, J., Reimann, P., Hänggi, P.: Surmounting Oscillating Barriers. Phys. Rev. Lett. 84, 1639–1642 (2000)

    Article  Google Scholar 

  20. Nikitin, A., Stocks, N.G., Bulsara, A.R.: Phys. Rev. E 68, 016103 (2003)

    Article  Google Scholar 

  21. Casado-Pascual, J., Gomez-Ordonez, J., Morillo, M., Hänggi, P.: Two-State Theory of Nonlinear Stochastic Resonance. Phys. Rev. Lett. 91, 210601 (2003)

    Article  Google Scholar 

  22. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  23. Lo, C.F., Lee, H.C., Hui, C.H.: A simple approach for pricing barrier options with time-dependent parameters. Quant. Finance 3, 98–107 (2003)

    Article  MathSciNet  Google Scholar 

  24. Lo, C.F., Tang, H.M., Ku, K.C., Hui, C.H.: Valuation of CEV barrier options with time-dependent model parameters. In: Proceedings of the 2nd IASTED International Conference on Financial Engineering and Applications, Cambridge, MA, USA, November 8-10, pp. 34–39 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lo, C.F., Chung, T.K. (2006). First Passage Time Problem for the Ornstein-Uhlenbeck Neuronal Model. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_37

Download citation

  • DOI: https://doi.org/10.1007/11893028_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics