[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nonlinear Noise Reduction of Chaotic Time Series Based on Multi-dimensional Recurrent Least Squares Support Vector Machines

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

In order to resolve the noise reduction in chaotic time series, a novel method based on Multi-dimensional version of Recurrent Least Square Support Vector Machine(MDRLS-SVM) is proposed in this paper. By analyzing the relationship between the function approximation and the noise reduction, we realized that the noise reduction can be implemented by the function approximation techniques. On the basis of the MDRLS-SVM and the reconstructed embedding phase theory, the function approximation in the high dimensional embedding phase space is carried out and the noise reduction achieved simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schreiber, T., Grassberger, P.: A simple noise-reduction method for real data. Phys. Lett. A 160, 411–418 (1991)

    Article  MathSciNet  Google Scholar 

  2. Cawley, R., Hsu, G.H.: Local-geometric-projection method for noise reduction in chaotic maps and flows. Phys. Rev. A 46, 3057–3082 (1992)

    Article  MathSciNet  Google Scholar 

  3. Kantz, H., Schreiber, T., Hoffmann, I., Buzug, T., Pfister, G., Flepp, L.G., Simonet, J., Badii, R., Brun, E.: Nonlinear noise reduction: A case study on experimental data. Phys. Rev. E 48, 1529–1538 (1993)

    Article  Google Scholar 

  4. Leontitsis, A., Bountis, T., Pagge, J.: An adaptive way for improving noise reduction using Local Geometric Projection. CHAOS 14(1), 106–110 (2004)

    Article  Google Scholar 

  5. Farmer, J.D., Sidorowich, J.J.: Optimal shadowing and noise reduction. Physica D 47, 373–392 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davies, M.E.: Noise reduction schemes for chaotic time series. Physica D 79, 174–192 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Kern, A., Steeb, W.H., Stoop, R.: Projective noise cleaning with dynamic neighborhood selection. Int. J. Mod. Phys. C 11, 125–146 (2000)

    Article  Google Scholar 

  8. Suykens, J.A.K., Vandewalle, J.: Recurrent Least Squares Support Vector Machines. IEEE Tran. on Circuits and System-I: Fundamental Theory and Applications 47(7), 1109–1114 (2000)

    Article  Google Scholar 

  9. Takens, F.: Detecting strange attractors in fluid turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical systems and turbulence, pp. 366–381. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J., Zhou, Y., Bai, Y., Luo, J. (2006). Nonlinear Noise Reduction of Chaotic Time Series Based on Multi-dimensional Recurrent Least Squares Support Vector Machines. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_100

Download citation

  • DOI: https://doi.org/10.1007/11893028_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics