[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Making Sense of the Sensory Data – Coordinate Systems by Hierarchical Decomposition

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4253))

  • 1258 Accesses

Abstract

Having the right sensory channels is an important ingredient for building an autonomous agent, but we still have the problem of making sense of the sensory data for the agent. This is the basic problem of artificial intelligence. Here we propose an algebraic method for generating abstract coordinate system representations of the environment based on the agent’s actions. These internal representations can be refined and regenerated during the lifespan of the agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brooks, R.A.: Cambrian Intelligence: The Early History of the New AI. MIT Press (A Bradford Book), Cambridge (1999)

    MATH  Google Scholar 

  2. Steels, L.: Intelligence with representation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 361(1811), 2381–2395 (2003)

    Article  MathSciNet  Google Scholar 

  3. Rhodes, J.L.: Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Finite-State Physics, Biology, Philosophy, Games, and Codes. University of California at Berkeley, Mathematics Library (1971)

    Google Scholar 

  4. Nehaniv, C.L., Rhodes, J.L.: The evolution and understanding of hierarchical complexity in biology from an algebraic perspective. Artificial Life 6, 45–67 (2000)

    Article  Google Scholar 

  5. Devadas, S., Newton, A.R.: Decomposition and factorization of sequential finite state machinces. IEEE Transactions on Computer-Aided Design 8(11), 1206–1217 (1989)

    Article  Google Scholar 

  6. Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state automata: Comparison of implementations for krohn-rhodes theory. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–316. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Egri-Nagy, A., Nehaniv, C.L.: GrasperMachine, Computational Semigroup Theory for Formal Models of Understanding (2003), http://graspermachine.sf.net

  8. Egri-Nagy, A.: Algebraic Hierarchical Decomposition of Finite State Automata – A Computational Approach. PhD thesis, University of Hertfordshire, School of Computer Science (2005)

    Google Scholar 

  9. Krohn, K., Rhodes, J.L., Tilson, B.R.: 5, The Prime Decomposition Theorem of the Algebraic Theory of Machines. In: Arbib, M.A. (ed.) Algebraic Theory of Machines, Languages, and Semigroups, pp. 81–125. Academic Press, London (1968)

    Google Scholar 

  10. von Uexküll, J.: Environment [Umwelt] and inner world of animals. In: Burghardt, G.M. (ed.) Foundations of Comparative Ethology, Van Nostrand Reinhold, New York, pp. 222–245 (1985)

    Google Scholar 

  11. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Organization of the information flow in the perception-action loop of evolved agents. In: Zebulum, R.S., Gwaltney, D., Hornby, G., Keymeulen, D., Lohn, J., Stoica, A. (eds.) Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pp. 177–180. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  12. Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induction. Physica D 75, 11–54 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Egri-Nagy, A., Nehaniv, C.L. (2006). Making Sense of the Sensory Data – Coordinate Systems by Hierarchical Decomposition. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_43

Download citation

  • DOI: https://doi.org/10.1007/11893011_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46542-3

  • Online ISBN: 978-3-540-46544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics