[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sensor Network Localization Using Least Squares Kernel Regression

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4253))

  • 1582 Accesses

Abstract

This paper considers the sensor network localization problem using signal strength. Unlike range-based methods signal strength information is stored in a kernel matrix. Least squares regression methods are then used to get an estimate of the location of unknown sensors. Locations are represented as complex numbers with the estimate function consisting of a linear weighted sum of kernel entries. The regression estimates have similar performance to previous localization methods using kernel classification methods, but at reduced complexity. Simulations are conducted to test the performance of the least squares kernel regression algorithm. Finally, the paper discusses on-line implementations of the algorithm, methods to improve the performance of the regression algorithm, and using kernels to extract other information from distributed sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine, 102–114 (August 2002)

    Google Scholar 

  2. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for very small devices. Tech. Rep. 00-0729, Computer Science Dept., Univ. of Southern California (2000)

    Google Scholar 

  3. Castro, P., Chiu, P., Kremenek, T., Muntz, R.: A probabilistic room location service for wireless networked environments. In: ACM Ubicomp 2001, Atlanta, GA (2001)

    Google Scholar 

  4. de Kruif, B.: Function approximation for learning control, a key sample based approach. Ph.D. thesis, University of Twente, Netherland (2004)

    Google Scholar 

  5. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed regression; an efficient framework for modeling sensor network data. In: Information Processing in Sensor Networks 2004, Berkeley, CA (April 2004)

    Google Scholar 

  6. Hightower, J., Borriello, G.: Real-time error in location modeling for ubiquitous computing, in Location, Modeling for Ubiquitous Computing. In: Ubicomp 2001 Workshop Proceedings, pp. 21–27 (2001)

    Google Scholar 

  7. Kuh, A.: Intelligent recursive kernel subspace estimation algorithms. In: The 39th Annual Conference of Information Sciences and Systems (CISS 2005), Baltimore, MD, pp. 216–221 (2005)

    Google Scholar 

  8. Muller, K., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. on Neural Networks 12(2), 181–202 (2001)

    Article  Google Scholar 

  9. Nguyen, X., Jordan, M., Sinopoli, B.: A kernel-based learning approach to ad hoc sensor network localization. ACM Transactions on Sensor Networks 1(1), 134–152 (2005)

    Article  Google Scholar 

  10. Patwari, N., Hero, A., Perkins, M., Correat, N., O’Dea, R.: Relative location estimation in wireless sensor networks. IEEE Transaction on Signal Processing 51(8), 2137–2148 (2003)

    Article  Google Scholar 

  11. Predd, J.B., Kulkarni, S.R., Poor, H.V.: Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections. In: Proceedings of the SPIE Conference and Advanced Signal Processing Algorithms, Architectures, and Implementations XV, San Diego, CA (August 2005)

    Google Scholar 

  12. Roos, T., Myllymaki, P., Tirri, H.: A statistical modeling approach to location estimation. IEEE Transactions on Mobile Computing 1(1), 59–69 (2002)

    Article  Google Scholar 

  13. Seidel, S., Rappaport, T.: 914MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation 40(2), 207–217 (1992)

    Article  Google Scholar 

  14. Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least squares support vector machines. World Scientific Publishing Co., Singapore (2002)

    Book  MATH  Google Scholar 

  15. Vapnik, V.: Statistical learning theory. John Wiley, New York (1998)

    MATH  Google Scholar 

  16. Zhu, C., Kuh, A.: Sensor network localization using pattern recognition and least squares kernel methods. In: Proceedings of 2005 Hawaii, IEICE and SITA Joint Conference on Information Theory (HISC 2005), May 25-27, 2005, Honolulu, HI (2005)

    Google Scholar 

  17. Zhu, C., Kuh, A.: Dynamic Ad Hoc network localization using online least squares kernel subspace methods. In: 2006 IEEE International Symposium on Information Theory, Seattle, WA (July 2006) (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuh, A., Zhu, C., Mandic, D. (2006). Sensor Network Localization Using Least Squares Kernel Regression. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_162

Download citation

  • DOI: https://doi.org/10.1007/11893011_162

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46542-3

  • Online ISBN: 978-3-540-46544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics