[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Geometric Modeling for Interpolation Surfaces Based on Blended Coordinate System

  • Conference paper
Interactive Technologies and Sociotechnical Systems (VSMM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4270))

Included in the following conference series:

  • 1314 Accesses

Abstract

In this paper we present a new method for the model of interpolation surfaces by the blending of polar coordinates and Cartesian coordinate. A trajectory curve is constructed by circular trigonometric Hermite interpolation spline (CTHIS) and a profile curve is presented by C 2-continuous B-spline like interpolation spline (BSLIS). A piecewise interpolation spline surface is incorporated by the blending of CTHIS and BSLIS. In addition, scaling functions have been introduced to improve the flexibility of the model of the interpolation surfaces. On the basis of these results, some examples are given to show how the method is used to model some interesting surfaces.

This work was completed with the support by the National Natural Science Foundation of China under Grant No. 10171026 and No. 60473114 and in part by the Research Funds for Young Innovation Group, Education Department of Anhui Province under Grant No. 2005TD03 and the Natural Science Foundation of Anhui Provincial Education Department under Grant No. 2005jq1120zd, No. 2006KJ252B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alfeld, P., Neamtu, M., Schumaker, L.L.: Circular Bernstein-Bézier polynomials. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for curves and surfaces, pp. 11–20. Vanderbilt University Press (1995)

    Google Scholar 

  2. Alfeld, P., Neamtu, M., Schumaker, L.L.: Fitting scattered data on sphere-like surfaces using spherical splines. J. Comput. Appl. Math. 73, 5–43 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Casciola, G., Morigi, S.: Inverse spherical surfaces. Journal of Computational and Applied Mathematics 176, 411–424 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cusimano, C., Stanley, S.: Circular Bernstein-Bézier spline approximation with knot removal. J. Comput. Appl. Math. 155, 177–185 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gfrerrer, A., Röchel, O.: Blended Hermite interpolants. Computer Aided Geometric Design 18, 865–873 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kochanek, D., Bartels, R.: Interpolating splines with local tension, continuity, and bias control. Computer Graphics (SIGGRAPH 1984) 18, 33–41 (1984)

    Article  Google Scholar 

  7. Morigi, S., Neamtu, M.: Some results for a class of generalized polynomials. Advances in computational mathematics 12, 133–149 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Piegl, L., Ma, W., Tiller, W.: An alternative method of curve interpolation. The Visual Computer 21, 104–117 (2005)

    Article  Google Scholar 

  9. Sánchez-Reyes, J.: Single-valued spline curves in polar coordinates. Computer Aided Design 24, 307–315 (1992)

    Article  MATH  Google Scholar 

  10. Sánchez-Reyes, J.: Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials. Computer Aided Geometric Design 15, 909–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Seidel, H.-P.: An intruduction to polar forms. IEEE Computer Graphics & Applications 13, 38–46 (1993)

    Article  Google Scholar 

  12. Seidel, H.-P.: Polar forms and triangular B-spline surfaces. In: Du, D.-Z., Hwang, F. (eds.) Euclidean Geometry and Computers, 2nd edn., pp. 235–286. World Scientific Publishing Co., Singapore (1994)

    Google Scholar 

  13. Su, B.Y., Tan, J.Q.: A family of quasi-cubic blended splines and applications. J. Zhejiang Univ. SCIENCE A 7, 1550–1560 (2006)

    Article  MATH  Google Scholar 

  14. Tai, C.L., Loe, K.F.: Alpha-spline: a C 2 continuous spline with weights and tension control. In: Proc. of International Conference on Shape Modeling and Applications, pp. 138–145 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, B., Tan, J. (2006). Geometric Modeling for Interpolation Surfaces Based on Blended Coordinate System. In: Zha, H., Pan, Z., Thwaites, H., Addison, A.C., Forte, M. (eds) Interactive Technologies and Sociotechnical Systems. VSMM 2006. Lecture Notes in Computer Science, vol 4270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11890881_25

Download citation

  • DOI: https://doi.org/10.1007/11890881_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46304-7

  • Online ISBN: 978-3-540-46305-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics