Abstract
This paper presents a semi-automatic method for tracking the mitral valve leaflet in transesophageal echocardiography. The algorithm requires a manual initialization and then segments an image sequence. The use of two constrained active contours and curve fitting techniques results in a fast segmentation algorithm. The active contours successfully track the inner cardiac muscle and the mitral valve leaflet axis. Three sequences have been processed and the generated muscle outline and leaflet axis have been visually assessed by an expert. This work is a part of a more general project which aims at providing real-time detection of the mitral valve leaflet in transesophageal echocardiography images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cootes, T., Taylor, C.: Active shape models - smart snakes. In: Proceedings of the British Machine Vision Conference, pp. 266–275 (1992)
Chalana, V., Linker, D.T., Haynor, D.R., Kim, Y.: A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans. Med. Imag. 15, 290–298 (1996)
Mignotte, M., Meunier, J., Tardif, J.-C.: Endocardial boundary estimation and tracking in echocardiographic images using deformable templates and markov random fields. Pattern Analysis and Applications 4, 256–271 (2001)
Mailloux, G.E., Langlois, F., Simard, P.Y., Bertrand, M.: Restoration of the velocity field of the heart from two-dimensional echocardiograms. IEEE Trans. Med. Imag. 8, 143–153 (1989)
Adam, D., Hareuveni, O., Sideman, S.: Semiautomated border tracking of cine echocardiographic ventricular images field of the heart from two-dimensional echocardiograms. IEEE Trans. Med. Imag. 6, 266–271 (1987)
Jacob, G., Noble, J., Behrenbruch, C., Kelion, A., Banning, A.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Trans. Med. Imag. 21, 226–238 (2002)
Chen, A.A.a., Elayyadi, M., Radeva, P.: Tag surface reconstruction and tracking of myocardial beads from spamm-mri with parametric b-spline surfaces. IEEE Trans. Med. Imag. 20, 94–103 (2001)
Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Atlas-based segmentation of 4d cardiac mr sequences using nonrigid registration (2002)
Lelieveldt, B., Mitchell, S.C., Bosch, J.G., van der Geest, R.J., Sonka, M., Reiber, J.H.C.: Time-Continuous Segmentation of Cardiac Image Sequences Using Active Appearance Motion Models. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 249–256. Springer, Heidelberg (2001)
Montillo, A., Metaxas, D., Axel, L.: Automated segmentation of the left and right ventricles in 4D cardiac SPAMM images. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, p. 620. Springer, Heidelberg (2002)
Comaniciu, D., Zhou, X.S., Chen, S.A.Y., Elayyadi, M., Radeva, P.: Robust Real-Time Myocardial Border Tracking for Echocardiography: An Information Fusion Approach. IEEE Trans. Med. Imag. 20, 94–103 (2001)
Mikic, I., Krucinski, S., Thomas, J.D.: Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates. IEEE Trans. Med. Imag. 17, 274–284 (1998)
Jansen, C., Arigovindan, M., Sühling, M., Marsch, S., Unser, M., Hunziker, P.: Multidimensional, multistage wavelet footprints: A new tool for image segmentation and feature extraction in medical ultrasound. In: Sonka, M., Fitzpatrick, J. (eds).: Progress in Biomedical Optics and Imaging, vol. 4(23), 5032: Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI 2003) (Part II), San Diego CA, USA (2003) 762–767
Blake, A., Isard, M.: Active Contour. Springer, Heidelberg (1998)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)
Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12, 855–867 (1990)
Lachaud, J.-O., Taton, B.: Deformable model with a complexity independent from image resolution. Computer Vision and Image Understanding (accepted to appear, 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martin, S., Daanen, V., Chavanon, O., Troccaz, J. (2006). Fast Segmentation of the Mitral Valve Leaflet in Echocardiography. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_20
Download citation
DOI: https://doi.org/10.1007/11889762_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46257-6
Online ISBN: 978-3-540-46258-3
eBook Packages: Computer ScienceComputer Science (R0)