[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Melanoma Recognition Using Representative and Discriminative Kernel Classifiers

  • Conference paper
Computer Vision Approaches to Medical Image Analysis (CVAMIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4241))

Abstract

Malignant melanoma is the most deadly form of skin lesion. Early diagnosis is of critical importance to patient survival. Existent visual recognition algorithms for skin lesions classification focus mostly on segmentation and feature extraction. In this paper instead we put the emphasis on the learning process by using two kernel-based classifiers. We chose a discriminative approach using support vector machines, and a probabilistic approach using spin glass-Markov random fields. We benchmarked these algorithms against the (to our knowledge) state-of-the-art method on melanoma recognition, exploring how performance changes by using color or textural features, and how it is affected by the quality of the segmentation mask. We show with extensive experiments that the support vector machine approach outperforms the existing method and, on two classes out of three, it achieves performances comparable to those obtained by expert clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, D.J.: Modeling Brain Function. Cambridge University Press, Cambridge, USA (1989)

    MATH  Google Scholar 

  2. Caputo, B.: A new kernel method for object recognition: spin glass Markov random fields. PhD thesis, Stockholm (November 2004), Available at: http://www.nada.kth.se/~caputo

  3. Caputo, B., La Torre, E., Bouattour, S., Gigante, G.E.: A New Kernel Method for Microcalcification Detection: Spin Glass- Markov Random Fields. In: Proc. of MIE 2002, Budapest (August 2002)

    Google Scholar 

  4. De Vries, E., Bray, F.I., Coebergh, J.W.W., Parkin, D.M.: Changing Epidemiology of Malignant Cutaneous Melanoma in Europe 1953-1997: Rising Trends in Incidence and Mortality but Recent Stabilizations in Western Europe and Decreases in Scandinavia. Int. J. Cancer 107, 119–126 (2003)

    Article  Google Scholar 

  5. Ganster, H., Pinz, A., Rhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated Melanoma Recognition. IEEE Trans on MI 20(3) (March 2001)

    Google Scholar 

  6. Grana, C., Pellacani, G., Cucchiara, R., Seidenari, S.: A New Algorithm for Border Description of Polarized Light Surface Microscopic Images of Pigmented Skin Lesions. IEEE Trans on MI 22(8) (August 2003)

    Google Scholar 

  7. Grzymala-Busse, J.P., Grzymala-Busse, J.W., Hippe, Z.S.: Melanoma Prediction Using Data Mining System LERS. In: Proc COMPSAC 2001, pp. 615–620 (2001)

    Google Scholar 

  8. Lefevre, E., Colot, O., Vannoorenberghe, P., de Brucq, D.: Knowledge modeling methods in the framework of Evidence Theory An experimental comparison for melanoma detection. In: Proc. of Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 2806–2811

    Google Scholar 

  9. Rigel, D.S., Carucci, J.A.: Malignant Melanoma: Prevention, Early Detection, and Treatment in the 21st Century. CA Cancer J. Clin. 50, 215–236 (2000)

    Article  Google Scholar 

  10. Schiele, B., Crowley, J.L.: Recognition without correspondence using Multidimensional Receptive Field Hisograms. IJCV 36(1), 31–52 (2000)

    Article  Google Scholar 

  11. Scholkopf, B., Smola, A.J.: Learning with kernels. MIT Press, Cambridge (2001)

    Google Scholar 

  12. Vapnik, V.: Statistical learning theory. Wiley and Son, Chichester (1998)

    MATH  Google Scholar 

  13. Wallraven, C., Caputo, B., Graf, A.: Recognition with Local features: the kernel recipe. In: Proc. ICCV 2003 (2003)

    Google Scholar 

  14. Wei, L., Yang, Y., Nishikawa, R.M., Jiang, Y.: A Study on Several Machine-Learning Methods for Classification od Malignant and Benign Clustered Microcalcifications. IEEE Trans. On MI 24(3) (March 2005)

    Google Scholar 

  15. Informations available at the World Healt Organization website: http://www.who.int

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tommasi, T., La Torre, E., Caputo, B. (2006). Melanoma Recognition Using Representative and Discriminative Kernel Classifiers. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_1

Download citation

  • DOI: https://doi.org/10.1007/11889762_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46257-6

  • Online ISBN: 978-3-540-46258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics