[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection

  • Conference paper
Fault Diagnosis and Tolerance in Cryptography (FDTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4236))

Abstract

Traditional hardware error detection methods based on linear codes make assumptions about the typical or expected errors and faults and concentrate the detection power towards the expected errors and faults. These traditional methods are not optimal for the protection of hardware implementations of cryptographic hardware against fault attacks. An adversary performing a fault-based attack can be unpredictable and exploit weaknesses in the traditional implementations. To detect these attacks where no assumptions about expected error or fault distributions should be made we propose and motivate an architecture based on robust nonlinear systematic (n,k)-error-detecting codes. These code can provide uniform error detecting coverage independently of the error distributions. They make no assumptions about what faults or errors will be injected by an attacker and have fewer undetectable errors than linear codes with the same (n,k). We also present optimization approaches which provide for a tradeoff between the levels of robustness and required overhead for hardware implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Google Scholar 

  2. FIPS PUB 197: Advanced Encryption Standard, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

  3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice Guide to Fault Attacks. Cryptology ePrint Archive, Report 2004/100, Available: http://eprint.iacr.org/2004/100.pdf

  4. Karpovsky, M.G., Taubin, A.: A New Class of Nonlinear Systematic Error Detecting Codes. IEEE Trans. Info. Theory 50(8), 1818–1820 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chen, C.N., Yen, S.M.: Differential Fault Analysis on AES Key Schedule and Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 118–129. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on AES. Cryptology ePrint Archive, Report 2003/010, Available: http://eprint.iacr.org/2003/010.pdf

  7. Giraud, C.: DFA on AES. Cryptology ePrint Archive, Report 2003/008, Available: http://eprint.iacr.org

  8. Blömer, J., Seifert, J.P.: Fault Based Cryptanalysis of the Advanced Encryption Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Quisquater, J.J., Piret, G.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent Error Detection of Fault Based Side-Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 21(12), 1509–1517 (2002)

    Article  Google Scholar 

  11. Karri, R., Kuznetsov, G., Gössel, M.: Parity-Based Concurrent Error Detection of Substitution-Permutation Network Block Ciphers. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 113–124. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error Analysis and Detection Procedures for a Hardware Implementation of the Advanced Encryption Standard. IEEE Transactions on Computers 52(4) (2003)

    Google Scholar 

  13. Karpovsky, M.G., Kulikowski, K., Taubin, A.: Robust Protection against Fault-Injection Attacks of Smart Cards Implementing the Advanced Encryption Standard. In: Proc. Int. Conference on Dependable Systems and Networks (DNS 2004) (July 2004)

    Google Scholar 

  14. Karpovsky, M.G., Kulikowski, K., Taubin, A.: Differential Fault Analysis Attack Resistant Architectures for the Advanced Encryption Standard. In: Proc. World Computing Congress, Cardis (August 2004)

    Google Scholar 

  15. Karpovsky, M.G., Nagvajara, P.: Optimal Robust Compression of Test Responses. IEEE Trans. on Computers 39(1), 138–141 (1990)

    Article  Google Scholar 

  16. Karpovsky, M.G., Nagvajara, P.: Optimal Codes for the Minimax Criterion on Error Detection. IEEE Trans. on Information Theory (November 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulikowski, K.J., Karpovsky, M.G., Taubin, A. (2006). Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, JP. (eds) Fault Diagnosis and Tolerance in Cryptography. FDTC 2006. Lecture Notes in Computer Science, vol 4236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889700_17

Download citation

  • DOI: https://doi.org/10.1007/11889700_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46250-7

  • Online ISBN: 978-3-540-46251-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics