[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Non-linear Residue Codes for Robust Public-Key Arithmetic

  • Conference paper
Fault Diagnosis and Tolerance in Cryptography (FDTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4236))

  • 775 Accesses

Abstract

We present a scheme for robust multi-precision arithmetic over the positive integers, protected by a novel family of non-linear arithmetic residue codes. These codes have a very high probability of detecting arbitrary errors of any weight. Our scheme lends itself well for straightforward implementation of standard modular multiplication techniques, i.e. Montgomery or Barrett Multiplication, secure against active fault injection attacks. Due to the non-linearity of the code the probability of detecting an error does not only depend on the error pattern, but also on the data. Since the latter is not usually known to the adversary a priori, a successful injection of an undetected error is highly unlikely. We give a proof of the robustness of these codes by providing an upper bound on the number of undetectable errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shamir, A.: Method and apparatus for protecting public key schemes from timing and fault attacks. US Patent No. 5, 991, 415 (1999)

    Google Scholar 

  2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on RSA with CRT: Concrete results and practical countermeasures (2002)

    Google Scholar 

  3. Blömer, J., Otto, M., Seifert, J.: A new crt-rsa algorithm secure against bellcore attacks. In: CCS 2003: Proceedings of the 10th ACM conference on Computer and communications security, pp. 311–320. ACM Press, New York (2003)

    Chapter  Google Scholar 

  4. Yen, S.M., Joye, M.: Checking before output may not be enough against fault-based cryptanalysis. IEEE Trans. Comp. 49, 967–970 (2000)

    Article  Google Scholar 

  5. Wagner, D.: Cryptanalysis of a provably secure CRT-RSA algorithm. In: CCS 2004: Proceedings of the 11th ACM Conference on Computer and Communications Security, pp. 92–97. ACM Press, New York (2004)

    Chapter  Google Scholar 

  6. Karpovsky, M., Taubin, A.: New class of nonlinear systematic error detecting codes. IEEE Transactions on Information Theory 50, 1818–1820 (2004)

    Article  MathSciNet  Google Scholar 

  7. Karpovsky, M.G., Kulikowski, K.J., Taubin, A.: Robust protection against fault-injection attacks of smart cards implementing the advanced encryption standard. In: Simoncini, L. (ed.) Proc. Int. Conf. Dependable Systems and Networks (DSN 2004), pp. 93–101. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  8. Kulikowski, K., Karpovsky, M.G., Taubin, A.: Robust codes for fault attack resistant cryptographic hardware. In: Breveglieri, L., Koren, I. (eds.) 2nd Int. Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2005) (2005)

    Google Scholar 

  9. Rao, T.R.N., Garcia, O.N.: Cyclic and multiresidue codes for arithmetic operations. IEEE Trans. Inf. Theory 17, 85–91 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mandelbaum, D.: Arithmetic codes with large distance. IEEE Transactions on Information Theory 13, 237–242 (1967)

    Article  MATH  Google Scholar 

  11. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Proceedings of the Second Usenix Workshop on Electronic Commerce, USENIX Association, pp. 1–11. USENIX Press (1996)

    Google Scholar 

  12. Pradhan, D.K.: Fault Tolerant Computing – Theory and Techniques, 1st edn., vol. 1. Prentice-Hall, New Jersey (1986)

    Google Scholar 

  13. Koç, Ç.K., Acar, T., Kaliski, B.J.: Analyzing and comparing montgomery multiplication algorithms. IEEE Micro 16, 26–33 (1996)

    Article  Google Scholar 

  14. Gaubatz, G.: Versatile montgomery multiplier architectures. Master’s thesis, Worcester Polytechnic Institute, Worcester, Massachusetts (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaubatz, G., Sunar, B., Karpovsky, M.G. (2006). Non-linear Residue Codes for Robust Public-Key Arithmetic. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, JP. (eds) Fault Diagnosis and Tolerance in Cryptography. FDTC 2006. Lecture Notes in Computer Science, vol 4236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889700_16

Download citation

  • DOI: https://doi.org/10.1007/11889700_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46250-7

  • Online ISBN: 978-3-540-46251-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics