[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis

  • Conference paper
Computational Methods in Systems Biology (CMSB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4210))

Included in the following conference series:

Abstract

The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–45 (2004)

    Article  Google Scholar 

  2. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI Press, Menlo Park (2000)

    Google Scholar 

  3. Hartigan, J.A.: Direct clustering of a data matrix. Journal of American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  4. Kung, S.Y., Mak, M.W., Tagkopoulos, I.: Multi-metric and multi-substructure biclustering analysis for gene expression data. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB 2005) (2005)

    Google Scholar 

  5. Turner, H., Bailey, T., Krzanowski, W.: Improved biclustering of microarray data demonstrated through systematic performance tests. Computational Statistics and Data Analysis 48(2), 235–254 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Peeters, R.: The maximum edge biclique problem is NP-Complete. Discrete Applied Mathematics 131, 651–654 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yang, J., Wang, H., Wang, W., Yu, P.: Enhanced biclustering on expression data. In: Proceedings of the Third IEEE Symposium on BioInformatics and Bioengineering (BIBE 2003), pp. 1–7 (2003)

    Google Scholar 

  8. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, S136–S144 (2002)

    Google Scholar 

  9. Zhang, Z., Teo, A., Ooi, B.C.a.: Mining deterministic biclusters in gene expression data. In: Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), pp. 283–292 (2004)

    Google Scholar 

  10. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data (to appear, 2006)

    Google Scholar 

  11. Bryan, K., Cunningham, P., Bolshakova, N.: Biclustering of expression data using simulated annealing. In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), pp. 383–388 (2005)

    Google Scholar 

  12. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1(2), 98–110 (1993)

    Article  Google Scholar 

  13. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)

    MATH  Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps. Springer, New York (2001)

    MATH  Google Scholar 

  15. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)

    MATH  Google Scholar 

  16. Rose, K., Gurewwitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recogn. Lett. 11(9), 589–594 (1990)

    Article  MATH  Google Scholar 

  17. Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: a new tool for clustering and function approximation. IEEE Transactions on Fuzzy Systems 7(4), 377–393 (1999)

    Article  Google Scholar 

  18. Krishnapuram, R., Keller, J.M.: The possibilistic c-means algorithm: insights and recommendations. IEEE Transactions on Fuzzy Systems 4(3), 385–393 (1996)

    Article  Google Scholar 

  19. Masulli, F., Schenone, A.: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artificial Intelligence in Medicine 16(2), 129–147 (1999)

    Article  Google Scholar 

  20. Nasraoui, O., Krishnapuram, R.: Crisp interpretations of fuzzy and possibilistic clustering algorithms, Aachen, Germany, vol. 3, pp. 1312–1318 (1995)

    Google Scholar 

  21. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22(3) (1999)

    Google Scholar 

  22. Ball, C.A., Dolinski, K., Dwight, S.S., Harris, M.A., Tarver, L.I., Kasarskis, A., Scafe, C.R., Sherlock, G., Binkley, G., Jin, H., Kaloper, M., Orr, S.D., Schroeder, M., Weng, S., Zhu, Y., Botstein, D., Cherry, M.J.: Integrating functional genomic information into the saccharomyces genome database. Nucleic Acids Research 28(1), 77–80 (2000)

    Article  Google Scholar 

  23. Aach, J., Rindone, W., Church, G.: Systematic management and analysis of yeast gene expression data (2000)

    Google Scholar 

  24. R Foundation for Statistical Computing Vienna, Austria: R: A language and environment for statistical computing (2005)

    Google Scholar 

  25. Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Congress on Evolutionary Computation (CEC 2004), Piscataway, NJ, pp. 166–173. IEEE, Los Alamitos (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filippone, M., Masulli, F., Rovetta, S., Mitra, S., Banka, H. (2006). Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2006. Lecture Notes in Computer Science(), vol 4210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11885191_22

Download citation

  • DOI: https://doi.org/10.1007/11885191_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46166-1

  • Online ISBN: 978-3-540-46167-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics