[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Face Description for Perceptual User Interfaces

  • Conference paper
Current Topics in Artificial Intelligence (CAEPIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4177))

Included in the following conference series:

  • 854 Accesses

Abstract

We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two different face representation approaches: Principal Components Analysis (PCA) and Gabor filters. The results achieved using a Support Vector Machine (SVM) based classifier are promising and particularly better for the second representation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Argyle, M.: Bodily communication. Methuen, 2nd edn. (1988)

    Google Scholar 

  2. Bailly-Bailliere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariethoz, J., Matas, J., Messer, K., Popovici, V., Poree, F., Ruiz, B., Thiran, J.-P.: The banca database and evaluation protocol. In: Kittler, J., Nixon, M. (eds.) Proc. Audio- and Video-Based Biometric Person Authentication, Berlin, pp. 625–638. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bartlett, M.S., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection and facial expression recognition: Development and applications to human computer interaction. In: Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on PAMI 19(7), 711–720 (1997)

    Google Scholar 

  5. Bolme, D.: Elastic bunch graph matching. Master’s thesis, Colorado State University, Computer Science Department (June 2003)

    Google Scholar 

  6. Bruce, V., Young, A.: The eye of the beholder. Oxford University Press, Oxford (1998)

    Google Scholar 

  7. Campbell, N.W., Thomas, B.T.: Automatic selection of gabor filters for pixel classification. In: Sixth International Conference on Image Processing and its Applications, pp. 761–765 (July 1997)

    Google Scholar 

  8. Castrillón Santana, M., Lorenzo Navarro, J., Hernández Sosa, D., Rodríguez-Domínguez, Y.: An analysis of facial description in static images and video streams. In: 2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal (June 2005)

    Google Scholar 

  9. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  10. Daugman, J.G.: Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Trans. on Acoustics, Speech, and Signal Processing 36(7) (1988)

    Google Scholar 

  11. Frischholz, R.W., Dieckmann, U.: Bioid: A multimodal biometric identification system. IEEE Computer 33(2) (2000)

    Google Scholar 

  12. Gokberk, B., Akarun, L., Alpaydýn, E.: Feature selection for pose invariant face recognition. In: International Conference on Pattern Recognition, Barcelona, Spain (2002)

    Google Scholar 

  13. Gosselin, F., Schyns, P.G.: Bubbles: a technique to reveal the use of information in recognition tasks. Vision Research, pp. 2261–2271 (2001)

    Google Scholar 

  14. Intel. Intel Open Source Computer Vision Library, b4.0 (August. 2004), http://www.intel.com/research/mrl/research/opencv

  15. Jing, Z., Mariani, R.: Glasses detection and extraction by deformable contour. In: International Conference on Pattern Recognition (2000)

    Google Scholar 

  16. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophisiology 58(6), 1233–1258 (1987)

    Google Scholar 

  17. Kirby, Y., Sirovich, L.: Application of the karhunen-loève procedure for the characterization of human faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(1) (1990)

    Google Scholar 

  18. Lyons, M.J., Budyneck, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)

    Article  Google Scholar 

  19. Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)

    Article  Google Scholar 

  20. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  21. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  22. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face recognition algorithms. TR 6264, NISTIR (January 1999)

    Google Scholar 

  23. Pollen, D.A., Ronner, S.F.: Phase relationship between adjacent simple cells in the visual cortex. Science 212, 1409–1411 (1981)

    Article  Google Scholar 

  24. Sinha, P., Torralba, T.P.: I think i know that face. Nature 384(6608), 384–404 (1996)

    Google Scholar 

  25. Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: A comparison study. In: Sixth IEEE Workshop on Applications of Computer Vision (December 2002)

    Google Scholar 

  26. Torralba, A.: Contextual modulation of target saliency. Advances in Neural Information Processing Systems (2001)

    Google Scholar 

  27. Turk, M.: Computer vision in the interface. Communications of the ACM 47(1), 61–67 (2004)

    Article  Google Scholar 

  28. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  29. Wu, B., Ai, H., Liu, R.: Glasses detection by boosting simple wavelet features. In: 17th Int. Conf. on Pattern Recognition, Cambridge, UK, pp. 292–295 (August 2004)

    Google Scholar 

  30. Yang, P., Shan, S., Gao, W., Li, S.Z., Zhang, D.: Face recognition using ada-boosted gabor features. In: Proc. of the 6th International Conference on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castrillón-Santana, M., Lorenzo-Navarro, J., Hernández-Sosa, D., Isern-González, J. (2006). Face Description for Perceptual User Interfaces. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds) Current Topics in Artificial Intelligence. CAEPIA 2005. Lecture Notes in Computer Science(), vol 4177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881216_24

Download citation

  • DOI: https://doi.org/10.1007/11881216_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45914-9

  • Online ISBN: 978-3-540-45915-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics