Abstract
We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two different face representation approaches: Principal Components Analysis (PCA) and Gabor filters. The results achieved using a Support Vector Machine (SVM) based classifier are promising and particularly better for the second representation approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Argyle, M.: Bodily communication. Methuen, 2nd edn. (1988)
Bailly-Bailliere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariethoz, J., Matas, J., Messer, K., Popovici, V., Poree, F., Ruiz, B., Thiran, J.-P.: The banca database and evaluation protocol. In: Kittler, J., Nixon, M. (eds.) Proc. Audio- and Video-Based Biometric Person Authentication, Berlin, pp. 625–638. Springer, Heidelberg (2003)
Bartlett, M.S., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection and facial expression recognition: Development and applications to human computer interaction. In: Computer Vision and Pattern Recognition (2003)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on PAMI 19(7), 711–720 (1997)
Bolme, D.: Elastic bunch graph matching. Master’s thesis, Colorado State University, Computer Science Department (June 2003)
Bruce, V., Young, A.: The eye of the beholder. Oxford University Press, Oxford (1998)
Campbell, N.W., Thomas, B.T.: Automatic selection of gabor filters for pixel classification. In: Sixth International Conference on Image Processing and its Applications, pp. 761–765 (July 1997)
Castrillón Santana, M., Lorenzo Navarro, J., Hernández Sosa, D., Rodríguez-Domínguez, Y.: An analysis of facial description in static images and video streams. In: 2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal (June 2005)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Daugman, J.G.: Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Trans. on Acoustics, Speech, and Signal Processing 36(7) (1988)
Frischholz, R.W., Dieckmann, U.: Bioid: A multimodal biometric identification system. IEEE Computer 33(2) (2000)
Gokberk, B., Akarun, L., Alpaydýn, E.: Feature selection for pose invariant face recognition. In: International Conference on Pattern Recognition, Barcelona, Spain (2002)
Gosselin, F., Schyns, P.G.: Bubbles: a technique to reveal the use of information in recognition tasks. Vision Research, pp. 2261–2271 (2001)
Intel. Intel Open Source Computer Vision Library, b4.0 (August. 2004), http://www.intel.com/research/mrl/research/opencv
Jing, Z., Mariani, R.: Glasses detection and extraction by deformable contour. In: International Conference on Pattern Recognition (2000)
Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophisiology 58(6), 1233–1258 (1987)
Kirby, Y., Sirovich, L.: Application of the karhunen-loève procedure for the characterization of human faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(1) (1990)
Lyons, M.J., Budyneck, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)
Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12), 1424–1445 (2000)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face recognition algorithms. TR 6264, NISTIR (January 1999)
Pollen, D.A., Ronner, S.F.: Phase relationship between adjacent simple cells in the visual cortex. Science 212, 1409–1411 (1981)
Sinha, P., Torralba, T.P.: I think i know that face. Nature 384(6608), 384–404 (1996)
Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: A comparison study. In: Sixth IEEE Workshop on Applications of Computer Vision (December 2002)
Torralba, A.: Contextual modulation of target saliency. Advances in Neural Information Processing Systems (2001)
Turk, M.: Computer vision in the interface. Communications of the ACM 47(1), 61–67 (2004)
Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)
Wu, B., Ai, H., Liu, R.: Glasses detection by boosting simple wavelet features. In: 17th Int. Conf. on Pattern Recognition, Cambridge, UK, pp. 292–295 (August 2004)
Yang, P., Shan, S., Gao, W., Li, S.Z., Zhang, D.: Face recognition using ada-boosted gabor features. In: Proc. of the 6th International Conference on Automatic Face and Gesture Recognition (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castrillón-Santana, M., Lorenzo-Navarro, J., Hernández-Sosa, D., Isern-González, J. (2006). Face Description for Perceptual User Interfaces. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds) Current Topics in Artificial Intelligence. CAEPIA 2005. Lecture Notes in Computer Science(), vol 4177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881216_24
Download citation
DOI: https://doi.org/10.1007/11881216_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45914-9
Online ISBN: 978-3-540-45915-6
eBook Packages: Computer ScienceComputer Science (R0)