[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Semantic Fusion Approach Between Medical Images and Reports Using UMLS

  • Conference paper
Information Retrieval Technology (AIRS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4182))

Included in the following conference series:

Abstract

One of the main challenges in content-based image retrieval still remains to bridge the gap between low-level features and semantic information. In this paper, we present our first results concerning a medical image retrieval approach using a semantic medical image and report indexing within a fusion framework, based on the Unified Medical Language System (UMLS) metathesaurus. We propose a structured learning framework based on Support Vector Machines to facilitate modular design and extract medical semantics from images. We developed two complementary visual indexing approaches within this framework: a global indexing to access image modality, and a local indexing to access semantic local features. Visual indexes and textual indexes – extracted from medical reports using MetaMap software application – constitute the input of the late fusion module. A weighted vectorial norm fusion algorithm allows the retrieval system to increase its meaningfulness, efficiency and robustness. First results on the CLEF medical database are presented. The important perspectives of this approach in terms of semantic query expansion and data-mining are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, H., MacMahon, H., Engelmann, R., Li, Q., Shiraishi, J., Katsuragawa, S., Aoyama, M., Ishida, T., Ashizawa, K., Metz, C.E., Doi, K.: Computer-aided diagnosis in chest radiography: Results of large-scale observer tests at the 1996- 2001 rsna scientific assemblies. RadioGraphics 23(1), 255–265 (2003)

    Article  Google Scholar 

  2. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. Journal of machine learning research 3, 1107–1135 (2003)

    Article  MATH  Google Scholar 

  3. Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 408–415 (2001)

    Google Scholar 

  4. Bui, A.A.T., Taira, R.K., Dionision, J.D.N., Aberle, D.R., El-Saden, S., Kangarloo, H.: Evidence-based radiology. Academic Radiology 9(6), 662–669 (2002)

    Article  Google Scholar 

  5. Chang, N.-S., Fu, K.-S.: Query-by-pictorial-example. IEEE Transactions on Software Engineering 6(6), 519–524 (1980)

    Article  Google Scholar 

  6. Chu, W.W., Alfonso, F.C., Ricky, K.T.: Knowledge-based image retrieval with spatial and temporal constructs. IEEE Transactions on Knowledge and Data Engineering 10, 872–888 (1998)

    Article  Google Scholar 

  7. Fleury, C.: Apports reciproques des informations textuelles et visuelles par analyse de la semantique latente pour la recherche d’information. Master’s thesis, Intelligence, Interaction and Information, CLIPS-MRIM Grenoble, France, IPAL UMI CNRS 2955, Singapore (June 2006)

    Google Scholar 

  8. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The qbic system. IEEE Computer 28(9), 23–32 (1995)

    Google Scholar 

  9. Guld, M.O., Kohnen, M., Keysers, D., Schubert, H., Wein, B.B., Bredno, J., Lehmann, T.M.: Quality of dicom header information for image categorization. In: Proceedings of the International Symposium on Medical Imaging, vol. 4685, pp. 280–287. SPIE, San Jose (2002)

    Google Scholar 

  10. Kahn, C.E.: Artificial intelligence in radiology: Decision support systems. RadioGraphics 14, 849–861 (1994)

    Google Scholar 

  11. Korn, P., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and effective retrieval of medical tumor shapes. IEEE Transactions on Knowledge and Data Engineering 10, 889–904 (1998)

    Article  Google Scholar 

  12. LeBozec, C., Jaulent, M.-C., Zapletal, E., Degoulet, P.: Unified modeling language and design of a case-based retrieval system in medical imaging. In: Proceedings of the Annual Symposium of the American Society for Medical Informatics, Nashville, TN, USA (1998)

    Google Scholar 

  13. Lehmann, T.M., Gld, M.O., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.B.: Content-based image retrieval in medical application. Methods of Information in Medicine 43(4), 354–361 (2004)

    Google Scholar 

  14. Lim, J., Chevallet, J.P.: Vismed: a visual vocabulary approach for medical image indexing and retrieval. In: Proceedings of the Asia Information Retrieval Symposium, pp. 84–96 (2005)

    Google Scholar 

  15. Lim, J., Jin, J.: A structured learning framework for content-based image indexing and visual query. Multimedia Systems 10, 317–331 (2005)

    Article  Google Scholar 

  16. Muller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medical applications - clinical benefits and future directions. International Journal of Medical Informatics 73, 1–23 (2004)

    Article  Google Scholar 

  17. Niblack, W., Barber, R., Equitz, W., Flickner, M.D., Glasman, E.H., Petkovic, D., Yanker, P., Faloutsos, C., Taubin, G.: QBICproject: querying images by content, using color, texture, and shape. In: Niblack, W. (ed.) Storage and Retrieval for Image and Video Databases, vol. 1908, pp. 173–187. SPIE, San Jose (1993)

    Google Scholar 

  18. Pentland, A., Picard, R.W., Sclaroff, S.: Photobook: Tools for content-based manipulation of image databases. International Journal of Computer Vision 18, 233–254 (1996)

    Article  Google Scholar 

  19. Sclaroff, S., la Cascia, M., Sethi, S.: Unifyng textual and visual cues for contentbased image retrieval on the world wide web. Computer Vision and Image Understanding 75(1/2), 86–98 (1998)

    Google Scholar 

  20. Shyu, C.-R., Brodley, C.E., Kak, A.C., Kosaka, A., Aisen, A.M., Broderick, L.S.: ASSERT: A physician-in-the-loop content-based retrieval system for HRCT image databases. Computer Vision and Image Understanding 75, 111–132 (1999); Special issue on content-based access for image and video libraries

    Google Scholar 

  21. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Contentbased image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)

    Article  Google Scholar 

  22. Westerveld, T.: Image retrieval: Content versus context. In: Recherche d’Information Assistee par Ordinateur (2000)

    Google Scholar 

  23. Zhao, R., Grosky, W.: Narrowing the semantic gap - improved text-based web document retrieval using visual features. IEEE Transactions on Multimedia 4(2), 189–200 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Racoceanu, D., Lacoste, C., Teodorescu, R., Vuillemenot, N. (2006). A Semantic Fusion Approach Between Medical Images and Reports Using UMLS. In: Ng, H.T., Leong, MK., Kan, MY., Ji, D. (eds) Information Retrieval Technology. AIRS 2006. Lecture Notes in Computer Science, vol 4182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11880592_35

Download citation

  • DOI: https://doi.org/10.1007/11880592_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45780-0

  • Online ISBN: 978-3-540-46237-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics