[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

Abstract

Statistical learning theory make large margins an important property of linear classifiers and Support Vector Machines were designed with this target in mind. However, it has been shown that large margins can also be obtained when much simpler kernel perceptrons are used together with ad–hoc updating rules, different in principle from Rosenblatt’s rule. In this work we will numerically demonstrate that, rewritten in a convex update setting and using an appropriate updating vector selection procedure, Rosenblatt’s rule does indeed provide maximum margins for kernel perceptrons, although with a convergence slower than that achieved by other more sophisticated methods, such as the Schlesinger–Kozinec (SK) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Franc, V., Hlavac, V.: An iterative algorithm learning the maximal margin classier. Pattern Recognition 36, 1985–1996 (2003)

    Article  MATH  Google Scholar 

  • Joachims, T.: Making Large-Scale Support Vector Machine Learning Practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  • Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classier design. IEEE Trans. Neural Networks 11, 124–136 (2000)

    Article  Google Scholar 

  • Li, Y., Long, P.M.: The relaxed online maximum margin algorithm. In: Solla, S.A., Leen, T.K., Muller, K.R. (eds.) Advances in Neural Information Processing Systems, 12th edn., pp. 498–504. MIT Press, Cambridge (2000)

    Google Scholar 

  • Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  • Ripley, B.D.: Neural networks and related methods for classication. J. R. Statist. Soc. Ser. B 56, 409–456 (1994)

    MATH  MathSciNet  Google Scholar 

  • Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univ. Press, Cambridge (2004)

    Google Scholar 

  • Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)

    Google Scholar 

  • UCI-benchmark repository of machine learning data sets, University of California Irvine, http://www.ics.uci.edu

  • Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García, D., González, A., Dorronsoro, J.R. (2006). Convex Perceptrons. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_70

Download citation

  • DOI: https://doi.org/10.1007/11875581_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics