Abstract
Statistical learning theory make large margins an important property of linear classifiers and Support Vector Machines were designed with this target in mind. However, it has been shown that large margins can also be obtained when much simpler kernel perceptrons are used together with ad–hoc updating rules, different in principle from Rosenblatt’s rule. In this work we will numerically demonstrate that, rewritten in a convex update setting and using an appropriate updating vector selection procedure, Rosenblatt’s rule does indeed provide maximum margins for kernel perceptrons, although with a convergence slower than that achieved by other more sophisticated methods, such as the Schlesinger–Kozinec (SK) algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Franc, V., Hlavac, V.: An iterative algorithm learning the maximal margin classier. Pattern Recognition 36, 1985–1996 (2003)
Joachims, T.: Making Large-Scale Support Vector Machine Learning Practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp. 169–184. MIT Press, Cambridge (1999)
Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classier design. IEEE Trans. Neural Networks 11, 124–136 (2000)
Li, Y., Long, P.M.: The relaxed online maximum margin algorithm. In: Solla, S.A., Leen, T.K., Muller, K.R. (eds.) Advances in Neural Information Processing Systems, 12th edn., pp. 498–504. MIT Press, Cambridge (2000)
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp. 185–208. MIT Press, Cambridge (1999)
Ripley, B.D.: Neural networks and related methods for classication. J. R. Statist. Soc. Ser. B 56, 409–456 (1994)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univ. Press, Cambridge (2004)
Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)
UCI-benchmark repository of machine learning data sets, University of California Irvine, http://www.ics.uci.edu
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, D., González, A., Dorronsoro, J.R. (2006). Convex Perceptrons. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_70
Download citation
DOI: https://doi.org/10.1007/11875581_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45485-4
Online ISBN: 978-3-540-45487-8
eBook Packages: Computer ScienceComputer Science (R0)