[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Vector Quantization Segmentation for Head Pose Estimation

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

  • 1719 Accesses

Abstract

Head pose estimation is an important area of investigation for understanding human dynamics. Appearance-based methods are one of the popular solutions to this problem. In this paper we present a novel approach using vector quantization that adds spatial information to the feature set. We compare this with raw, Gabor filtered and Wavelet features using the Carnegie Mellon PIE database. Our approach shows increased performance over the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, L., Tian, Y.: Comparative Study of Coarse Head Pose Estimation. In: IEEE Workshop on Motion and Video Computing (2002)

    Google Scholar 

  2. Choi, K.N., Worthington, P.L., Hancock, E.R.: Estimating Facial Pose Using Shape- From-Shading. Patter Recognition Letters 23(5), 533–548 (2002)

    Article  MATH  Google Scholar 

  3. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3), 143–166 (2003)

    Article  MATH  Google Scholar 

  4. Gee, A.H., Cipolla, R.: Determining the Gaze of Faces in Images. Image and Video Computing (1994)

    Google Scholar 

  5. Gong, S., Ong, E., McKenna, S.: Learning to Associate Faces across Views in Vector Space of Similarities to Prototypes. Biological Motivated Computer Vision (1998)

    Google Scholar 

  6. Heisele, B., Kressel, U., Ritter, W.: Tracking nonrigid, moving objects based on color cluster flow. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 1997, pp. 257–260 (1997)

    Google Scholar 

  7. Huang, J., Shao, X., Wechsler, H.: Face Pose Discrimination Using Support Vector Machines (SVM). In: Proc. of ICPR (1998)

    Google Scholar 

  8. Ji, Q.: 3D Face Pose Estimation and Tracking from a Monocular Camera. Image and Vision Computing 20(7), 499–511 (2002)

    Article  Google Scholar 

  9. Krueger, V., Sommer, G.: Gabor Wavelet Networks for Efficient Head Pose Estimation. Image and Vision Computing 20, 665–672 (2002)

    Article  Google Scholar 

  10. Lin, C., Fan, K.: Pose Classification of Human Faces by Weighting Mask Function Approach. Pattern Recognition Letters 24(12), 1857–1869 (2003)

    Article  Google Scholar 

  11. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Trans. On Communications 28, 84–95 (1980)

    Article  Google Scholar 

  12. Malciu, M., Pretuex, F.: A Robust Model-Based Approach for 3D Head Tracking in Video Sequences. In: Fourth IEEE International Conference on Automatic Face and Gesture Recognition (2000)

    Google Scholar 

  13. McKenna, S., Gong, S.: Real-time Face Pose Estimation. International Journal on Real Time Imaging 4, 333–347 (1998)

    Article  Google Scholar 

  14. Motwani, M.C., Ji, Q.: 3D Face Pose Discrimination Using Wavelets. In: Proc. of ICIP (2001)

    Google Scholar 

  15. Rae, R., Ritter, H.J.: Recognition of Human Head Orientation Based on Artificial Neural Networks. IEEE Trans. Neural Networks 2 (March 1998)

    Google Scholar 

  16. Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression Database. IEEE Trans. on Patter Analysis and Machine Intelligence 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  17. Srinivasan, S., Boyer, K.L.: Head Pose Estimation Using View Based Eigenspaces. In: Proc. of ICPR (2002)

    Google Scholar 

  18. Stiefelhagen, R., Yang, J., Waibel, A.: Tracking Eyes and monitoring Eye Gaze. In: Proceedings of Workshop on Perceptive User Interfaces, pp. 98–100 (1997)

    Google Scholar 

  19. Wang, J., Singh, S.: Video Based Human Dinamics: A Survey. Real Time Imaging 9(5), 321–346 (2003)

    Article  Google Scholar 

  20. Wei, Y.C., Fradet, L., Tan, T.N.: Head Pose Estimation using Gabor Eigenspace Modeling. In: Proc. of ICIP (2002)

    Google Scholar 

  21. Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopes, J., Singh, S. (2006). Vector Quantization Segmentation for Head Pose Estimation. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_35

Download citation

  • DOI: https://doi.org/10.1007/11875581_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics