[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolutionary Product-Unit Neural Networks for Classification

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Abstract

We propose a classification method based on a special class of feed-forward neural network, namely product-unit neural networks. They are based on multiplicative nodes instead of additive ones, where the nonlinear basis functions express the possible strong interactions between variables. We apply an evolutionary algorithm to determine the basic structure of the product-unit model and to estimate the coefficients of the model. We use softmax transformation as the decision rule and the cross-entropy error function because of its probabilistic interpretation. The empirical results over four benchmark data sets show that the proposed model is very promising in terms of classification accuracy and the complexity of the classifier, yielding a state-of-the-art performance.

This work has been financed in part by TIN 2005-08386-C05-02 projects of the Spanish Inter-Ministerial Commission of Science and Technology (MICYT) and FEDER funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  2. Kooperberg, C., Bose, S., Stone, C.J.: Polychotomous Regression. Journal of the American Statistical Association 92, 117–127 (1997)

    Article  MATH  Google Scholar 

  3. Durbin, R., Rumelhart, D.: Products Units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Computation 1, 133–142 (1989)

    Article  Google Scholar 

  4. Martínez-Estudillo, A.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., et al.: Evolutionary Product Unit based Neural Networks for Regression. Neural Networks, 477–486 (2006)

    Google Scholar 

  5. Martínez-Estudillo, A.C., Hervás-Martínez, C., Martínez-Estudillo, A.C., et al.: Hybridation of evolutionary algorithms and local search by means of a clustering method. IEEE Transactions on Systems, Man and Cybernetics, Part. B: Cybernetics 36, 534–546 (2006)

    Article  Google Scholar 

  6. Yao, X.: Evolving artificial neural network. Proceedings of the IEEE 9(87), 1423–1447 (1999)

    Google Scholar 

  7. Blake, C., Merz, C.J.: UCI repository of machine learning data bases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.thml

  8. Schmitt, M.: On the Complexity of Computing and Learning with Multiplicative Neural Networks. Neural Computation 14, 241–301 (2001)

    Article  Google Scholar 

  9. Ismail, A., Engelbrecht, A.P.: Global optimization algorithms for training product units neural networks. Presented at International Joint Conference on Neural Networks IJCNN 2000, Como, Italy (2000)

    Google Scholar 

  10. Engelbrecht, A.P., Ismail, A.: Training product unit neural networks. Stability and Control: Theory and Applications 2, 59–74 (1999)

    Google Scholar 

  11. Saito, K., Nakano, R.: Extracting Regression Rules From Neural Networks. Neural Networks 15, 1279–1288 (2002)

    Article  Google Scholar 

  12. Landwehr, N., Hall, M., Eibe, F.: Logistic Model Trees. Machine Learning 59, 161–205 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Estudillo, F.J., Hervás-Martínez, C., Peña, P.A.G., Martínez-Estudillo, A.C., Ventura-Soto, S. (2006). Evolutionary Product-Unit Neural Networks for Classification. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_157

Download citation

  • DOI: https://doi.org/10.1007/11875581_157

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics