Abstract
The boundary-value problem in spherical coordinates for the Shrödinger equation describing a hydrogen-like atom in a strong magnetic field is reduced to the problem for a set of radial equations in the framework of the Kantorovich method. The effective potentials of these equations are given by integrals over the angular variable between the oblate angular spheroidal functions depending on the radial variable as a parameter and their derivatives with respect to the parameter. A symbolic-numerical algorithm for evaluating the oblate spheroidal functions and corresponding eigenvalues which depend on the parameter, their derivatives with respect to the parameter and matrix elements is presented. The efficiency and accuracy of the algorithm and of the numerical scheme derived are confirmed by computations of eigenenergies and eigenfunctions for the low-excited states of a hydrogen atom in the uniform magnetic field.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dimova, M.G., Kaschiev, M.S., Vinitsky, S.I.: The Kantorovich method for high-accuracy calculations of a hydrogen atom in a strong magnetic field: low-lying excited states. Journal of Physics B: At. Mol. Phys. 38, 2337–2352 (2005)
Chuluunbaatar, O., et al.: On an effective approximation of the Kantorovich method for calculations of a hydrogen atom in a strong magnetic field. In: Proc. SPIE, vol. 6165, pp. 67–83 (2006)
Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)
Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)
Oguchi, T.: Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constants. Radio Sci. 5, 1207–1214 (1970)
Skorokhodov, S.L., Khristoforov, D.V.: Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions. Journal of Computational Mathematics and Mathematical Physics 46, 1132–1146 (2006)
Damburg, R.J., Propin, R.K.: On asymptotic expansions of electronic terms of the molecular ion H 2 + . J. Phys. B: At. Mol. Phys. 1, 681–691 (1968)
Gusev, A.A., et al.: Symbolic-numerical algorithm for solving the time-dependent Shroedinger equation by split-operator method. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 245–258. Springer, Heidelberg (2005)
Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gusev, A. et al. (2006). A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in Magnetic Field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_17
Download citation
DOI: https://doi.org/10.1007/11870814_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45182-2
Online ISBN: 978-3-540-45195-2
eBook Packages: Computer ScienceComputer Science (R0)