[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in Magnetic Field

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2006)

Abstract

The boundary-value problem in spherical coordinates for the Shrödinger equation describing a hydrogen-like atom in a strong magnetic field is reduced to the problem for a set of radial equations in the framework of the Kantorovich method. The effective potentials of these equations are given by integrals over the angular variable between the oblate angular spheroidal functions depending on the radial variable as a parameter and their derivatives with respect to the parameter. A symbolic-numerical algorithm for evaluating the oblate spheroidal functions and corresponding eigenvalues which depend on the parameter, their derivatives with respect to the parameter and matrix elements is presented. The efficiency and accuracy of the algorithm and of the numerical scheme derived are confirmed by computations of eigenenergies and eigenfunctions for the low-excited states of a hydrogen atom in the uniform magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dimova, M.G., Kaschiev, M.S., Vinitsky, S.I.: The Kantorovich method for high-accuracy calculations of a hydrogen atom in a strong magnetic field: low-lying excited states. Journal of Physics B: At. Mol. Phys. 38, 2337–2352 (2005)

    Article  Google Scholar 

  2. Chuluunbaatar, O., et al.: On an effective approximation of the Kantorovich method for calculations of a hydrogen atom in a strong magnetic field. In: Proc. SPIE, vol. 6165, pp. 67–83 (2006)

    Google Scholar 

  3. Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  4. http://mathworld.wolfram.com/SpheroidalWaveFunction.html

  5. http://www.netlib.org/eispack/

  6. http://www.nag.co.uk/numeric/numerical_libraries.asp

  7. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    Google Scholar 

  8. Oguchi, T.: Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constants. Radio Sci. 5, 1207–1214 (1970)

    Article  Google Scholar 

  9. Skorokhodov, S.L., Khristoforov, D.V.: Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions. Journal of Computational Mathematics and Mathematical Physics 46, 1132–1146 (2006)

    Article  MathSciNet  Google Scholar 

  10. Damburg, R.J., Propin, R.K.: On asymptotic expansions of electronic terms of the molecular ion H 2  + . J. Phys. B: At. Mol. Phys. 1, 681–691 (1968)

    Article  Google Scholar 

  11. Gusev, A.A., et al.: Symbolic-numerical algorithm for solving the time-dependent Shroedinger equation by split-operator method. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 245–258. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusev, A. et al. (2006). A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in Magnetic Field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_17

Download citation

  • DOI: https://doi.org/10.1007/11870814_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45182-2

  • Online ISBN: 978-3-540-45195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics