Abstract
This work reports a new methodology to develop a tumor grade diagnostic system, which is based on the integration of experts’ knowledge with image analysis techniques. The proposed system functions in two-levels and classify tumors according to their histological grade in three categories. In the lower-level, values of certain histopathological variables are automatically extracted by image analysis methods and feed the related concepts of a Fuzzy Cognitive Map (FCM) model. FCM model on the upper level interacts through a learning procedure to calculate the grade scores. Final class accuracy is estimated using the k-nearest classifier. The integrated FCM model yielded an accuracy of 63.63%, 72.41% and 84.21% for tumors of grade I, II, and III respectively. Results are promising, revealing new means for mining quantitative information and encoding significant concepts in decision process. The latter is very important in the field of computer aided diagnosis where the demand for reasoning and understanding is of main priority.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choi, H., Vasko, J., Bengtsson, E., Jarkrans, T., Malmstrom, U., Wester, K., Busch, C.: Grading of transitional cell bladder carcinoma by texture analysis of histological sections. Anal. Cell Pathol. 6, 327–343 (1994)
Jarkrans, T., Vasko, J., Bengtsson, E., Choi, H., Malmstrom, U., Wester, K., Busch, C.: Grading of transitional cell bladder carcinoma by image analysis of histological sections. Anal. Cell Pathol. 18, 135–158 (1995)
Thiran, J.-P., Macq, B.: Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE T. Bio-Med. Eng. 43, 1011–1020 (1996)
Mckeown, J.M., Ramsay, D.A.: Classification of astrocytomas and malignant astrocytomas by principal components analysis and a neural net. Journal of Neuropathology and Experimental Neurology 55, 1238–1245 (1996)
Pena-Reyes, C.A., Sipper, M.: A fuzzy genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17, 131–155 (1999)
Spyridonos, P., Ravazoula, P., Cavouras, D., Berberidis, K., Nikiforidis, G.: Computer-based grading of haematoxylin-eosin stained tissue sections of urinary bladder carcinomas. Medical Informatics & The Internet in Medicine 26(3), 179–190 (2001)
Belacel, N., Boulassel, M.: Multicriteria fuzzy assignment method: a useful tool to assist medical diagnosis. Artif. Intell. Med. 21, 201–207 (2001)
Spyridonos, P., Cavouras, D., Ravazoula, P., Nikiforidis, G.: Neural network based segmentation and classification system for the automatic grading of histological sections of urinary bladder carcinoma. Analytical and Quantitative Cytology and Histology 24(6), 317–324 (2002)
Spyridonos, P., Cavouras, D., Ravazoula, P., Nikiforidis, G.: A Computer-based diagnostic and prognostic system for assessing urinary bladder tumor grade and predicting cancer recurrence. Medical Informatics & The Internet in Medicine 27(2), 111–122 (2002)
Gil, J., Wu, H., Wang, B.Y.: Image analysis and morphometry in the diagnosis of breast cancer. Microsc. Res. Techniq. 59, 109–118 (2002)
Tasoulis, D., Spyridonos, P., Pavlidis, N., Cavouras, D., Ravazoula, P., Nikiforidis, G., Vrahatis, M.: Urinary Bladder Tumor Grade Diagnosis Using On-Line Trained Neural Networks. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 199–206. Springer, Heidelberg (2003)
Catto, J., Linkens, D., Abbod, M., Chen, M., Burton, J., Feeley, K., Hamdy, F.: Artificial Intelligence in Predicting Bladder Cancer Outcome: A Comparison of Neuro-Fuzzy Modeling and Artificial Neural Networks. Artif. Intell. Med. 9, 4172–4177 (2003)
Glotsos, D., Spyridonos, P., Petalas, P., Cavouras, D., Ravazoula, P., Dadioti, P., Lekka, I., Nikiforidis, G.: Computer-based malignancy grading of astrocytomas employing a Support Vector Machines Classifier, the WHO grading system, and the regular staining diagnostic procedure Hematoxylin-Eosin. Analytical and Quantitative Cytology and Histology 26(2), 77–83 (2004)
Antala, P., Fannesa, G., Timmermanb, D., Moreaua, Y., Moor, B.D.: Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection. Artificial Intelligence in Medicine 29, 39–60 (2003)
Kosko, B.: Fuzzy Cognitive Maps. Int. J. Man-Machine Studies 24, 65–75 (1986)
Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, New Jersey (1992)
Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Active Hebbian Learning to Train Fuzzy Cognitive Maps. Int. J. Approx. Reasoning 37, 219–249 (2004)
Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Unsupervised learning techniques for fine-tuning Fuzzy Cognitive Maps causal links. Int. J. Human-Computer Studies (in press, 2006)
Papageorgiou, E.I., Parsopoulos, K.E., Stylios, C.D., Groumpos, P.P., Vrahatis, M.N.: Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization. Int. J. Intel. Inform. Syst. 25(1), 95–121 (2005)
Papageorgiou, E.I., Groumpos, P.P.: A weight adaptation method for fine-tuning Fuzzy Cognitive Map causal links. Soft Computing Journal 9, 846–857 (2005)
Papageorgiou, E.I., Spyridonos, P., Ravazoula, P., Stylios, C.D., Groumpos, P.P., Nikiforidis, G.: Advanced Soft Computing Diagnosis Method for Tumor Grading. Artif. Intell. Med. 36, 59–70 (2006)
Epstein, J., Amin, M., Reuter, V., Mostofi, F., The Bladder Consensus Conference Committee: The World Health Organization/International Society of Urological Pathology Consensus Classification of Urothelial (Transitional Cell) neoplasms of the urinary bladder. The American Journal of Surgical Pathology 22(12), 1435–1448 (1998)
Murphy, W.M.: Urothelial neoplasia. In: Pathology and pathobiology of the urinary bladder and prostate, Williams & Wilkins, Baltimore (1992)
Carbin, B.E., Ekman, P., Gustafson, H., Christensen, N.J., Sandstedt, B., Silfversward, C.: Grading of human urothelial carcinoma based on nuclear atypia and mitotic frequency, Part I. Histological description, J. Urol 61, 968–971 (1998)
Bostwick, G., Ramnani, D., Cheng, L.: Diagnosis and grading of bladder cancer and associated lesions. Urologic Clinics of North America 26, 493–507 (1999)
Van der Poel, H., Schaafsma, H.E., Vooijs, P.G., Debruyne, F.M.J., Schalken, J.A.: Review Article. Quantitative light microscopy in Urological Oncology. Journal of Urology 148, 1–13 (1992)
Harralick, R., Shanmugam, K.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6), 610–621 (1973)
Ohanian, P., Dubes, R.: Performance evaluation for four classes of textural features. Pattern Recognition 8(25), 819–833 (1992)
Van Velthoven, R., Petein, M., Zlotta, A., Oosterlinck, W.J., Van Der Meijden, A., Zandona, C., Roels, H., Pasteels, J.-L., Schulman, C., Kiss, R.: Computer-assisted chromatin texture characterization of Feulgen-stained nuclei in a series of 331 transitional bladder cell carcinomas. J. Pathol. 173, 235–242 (1994)
Walker, R.F., Jackway, P., Longstaff, I.D.: Improving Co-occurrence Matrix Feature Discrimination. In: Proceedings of DICTA 1995, 3rd Conf. Digital Image Computing: Techniques & Applications, December 6-8, 1995, pp. 643–648 (1995)
Walker, R.F., Jackway, P.T., Lovell, B.: Cervical cell classification via co-occurrence and Markov random field features. In: Proceedings of Digital Image Computing: Techniques and Applications, pp. 294–299 (1995)
Lin, C.T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, Upper Saddle River (1996)
Mostofi, F.K., Davis, C.J., Sesterhenn, I.A.: WHO histologic typing of urinary bladder tumors. Springer, Berlin (1999)
Ooms, E., Anderson, W., Alons, C., Boon, M., Veldhuizen, R.: Analysis of the performance of pathologists in grading of bladder tumors. Human Pathology 14, 140–143 (1983)
Young, R.H.: Papillary lesions of the bladder: a historical prospective with discussion of the WHO/ISUP consensus classification system. In: The United States and Canadian Academy of Pathology Annual Meeting-ISUP Companion Meeting, San Francisco, CA, March 20-26 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spyridonos, P., Papageorgiou, E.I., Groumpos, P.P., Nikiforidis, G.N. (2006). Integration of Expert Knowledge and Image Analysis Techniques for Medical Diagnosis. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_11
Download citation
DOI: https://doi.org/10.1007/11867661_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44894-5
Online ISBN: 978-3-540-44896-9
eBook Packages: Computer ScienceComputer Science (R0)