[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spatio-temporal Composite-Features for Motion Analysis and Segmentation

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 843 Accesses

Abstract

Motion estimation by means of spatio-temporal energy filters –velocity tuned filters– is known to be robust to noise and aliasing and to allow an easy treatment of the aperture problem. In this paper we propose a motion representation based on the composition of spatio-temporal energy features, i.e., responses of a set of filters in phase quadrature tuned to different scales and orientations. Complex motion patterns are identified by unsupervised cluster analysis of energy features. The integration criterion reflects the degree of alignment of maxima of the features’s amplitude, which is related to phase congruence. The composite-feature representation has been applied to motion segmentation with a geodesic active model both for initialization and image potential definition. We will show that the resulting method is able to handle typical problems, such as partial and total occlusions, large inter-frame displacements, moving background and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sato, K., Aggarwal, J.: Temporal spatio-temporal transform and its application to tracking and interaction. Comput. Vis. Image Underst. 96, 100–128 (2000)

    Article  Google Scholar 

  2. Boykov, Y., Huttenlocher, D.: Adaptive bayesian recognition in tracking rigid objects. In: IEEE CVPR, vol. 2, pp. 697–704 (2000)

    Google Scholar 

  3. Nguyen, H., Smeulders, A.: Fast occluded object tracking by a robust appearance filter. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1099–1104 (2004)

    Article  Google Scholar 

  4. Montoliu, R., Pla, F.: An iterative region-growing algorithm for motion segmentation and estimation. Int. J. Intell. Syst. 20, 577–590 (2005)

    Article  MATH  Google Scholar 

  5. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22, 266–279 (2000)

    Article  Google Scholar 

  6. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12, 43–77 (1994)

    Article  Google Scholar 

  7. Heeger, D.: Model for the extraction of image flow. J. Opt. Soc. Am. A 4, 1471–1555 (1987)

    Article  Google Scholar 

  8. Simoncelli, E., Adelson, E.: Computing optical flow distributions using spatio-temporal filters. Technical Report 165, MIT Media Lab. Vision and Modeling, Massachusetts (1991)

    Google Scholar 

  9. Watson, A., Ahumada, A.: Model for human visual-motion sensing. J. Opt. Soc. Am. A 2, 322–342 (1985)

    Article  Google Scholar 

  10. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)

    Article  Google Scholar 

  11. Fleet, D.: Measurement of Image Velocity. Kluwer Academic Publishers, Massachusetts (1992)

    MATH  Google Scholar 

  12. Chamorro-Martínez, J., Fdez-Valdivia, J., García, J., Martínez-Baena, J.: A frequency domain approach for the extraction of motion patterns. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 3, pp. 165–168 (2003)

    Google Scholar 

  13. Morrone, M., Owens, R.: Feature detection from local energy. Pattern Recognit. Lett. 6, 303–313 (1987)

    Article  Google Scholar 

  14. Venkatesh, S., Owens, R.: On the classification of image features. Pattern Recognit. Lett. 11, 339–349 (1990)

    Article  MATH  Google Scholar 

  15. Weickert, J., Kühne, G.: Fast methods for implicit active contour models. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision and Graphics, pp. 43–58. Springer, New York (2003)

    Chapter  Google Scholar 

  16. Tsechpenakis, G., Rapantzikos, K., Tsapatsoulis, N., Kollias, S.: A snake model for object tracking in natural sequences. Signal Process. Image Commun. 19, 219–238 (2004)

    Article  Google Scholar 

  17. Dosil, R., Pardo, X., Fdez-Vidal, X.: Data driven detection of composite feature detectors for 3D image analysis. Image Vis. Comput. 32, 225–238 (2006)

    Article  Google Scholar 

  18. Field, D.: What is the goal of sensory coding. Neural Comput. 6, 559–601 (1994)

    Article  Google Scholar 

  19. Faas, F., van Vliet, L.: 3D-orientation space; filters and sampling. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 36–42. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Kovesi, P.: Invariant Measures of Image Features from Phase Information. PhD thesis, The University or Western Australia (1996)

    Google Scholar 

  21. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  22. Pal, N., Biswas, J.: Cluster validation using graph theoretic concepts. Pattern Recognit. 30, 847–857 (1996)

    Article  Google Scholar 

  23. Dosil, R., Pardo, X.: Generalized ellipsoids and anisotropic filtering for segmentation improvement in 3D medical imaging. Image Vis. Comput. 21, 325–343 (2003)

    Article  Google Scholar 

  24. URL: http://www-gva.dec.usc.es/~rdosil/motion_segmentation_examples.htm (2006)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dosil, R., Pardo, X.M., Fdez-Vidal, X.R., García, A. (2006). Spatio-temporal Composite-Features for Motion Analysis and Segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_30

Download citation

  • DOI: https://doi.org/10.1007/11864349_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics