Abstract
There are many situations in GIScience where it would be useful to be able to assign a region to characterize the space occupied by a set of points. Such a region should represent the location or configuration of the points as an aggregate, abstracting away from the individual points themselves. In this paper, we call such a region a ‘footprint’ for the points. We investigate and compare a number of methods for producing such footprints, with respect to nine general criteria. The discussion identifies a number of potential choices and avenues for further research. Finally, we contrast the related research already conducted in this area, highlighting differences between these existing constructs and our ‘footprints’.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Berg, M., Schwarzkopf, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and applications, 2nd edn. Springer, Berlin (2000)
O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)
van Kreveld, M.: Finding the wood by the trees. CG Tribune (1998), http://www.inria.fr/prisme/personnel/bronnimann/cgt/cgt10.ps
Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient characteristic hulls (in preparation, 2006)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)
Alani, H., Jones, C.B., Tudhope, D.: Voronoi-based region approximation for geographical information retrieval with gazetteers. International Journal of Geographical Information Science 15, 287–306 (2001)
Arampatzis, A., van Kreveld, M., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M., Benkert, M., Wolff, A.: Web-based delineation of imprecise regions. In: Workshop on Geographic Information Retrieval (SIGIR 2004) (2004) (accessed July 8, 2005), http://www.geo.unizh.ch/~rsp/gir/abstracts/arampatzis.pdf
Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory IT-29, 551–559 (1983)
Traka, M., Tziritas, G.: Panoramic view construction. Signal Processing: Image Communication 18, 465–481 (2003)
Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–260 (2001)
Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications 19, 127–153 (2001)
Sklansky, J., Kibler, D.: A theory of nonuniformly digitized binary pictures. IEEE Transactions on Systems, Man, and Cybernetics 6, 637–647 (1976)
Cinque, L., Lombardi, L.: Shape description and recognition by a multiresolution approach. Image and Vision Computing 13, 599–607 (1995)
Borgefors, G., Nyström, I., di Baja, G.S.: Computing skeletons in three dimensions. Pattern Recognition 32, 1225–1236 (1999)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16, 3 (2005)
Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology 18, 259–278 (1969)
Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Galton, A., Duckham, M. (2006). What Is the Region Occupied by a Set of Points?. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds) Geographic Information Science. GIScience 2006. Lecture Notes in Computer Science, vol 4197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863939_6
Download citation
DOI: https://doi.org/10.1007/11863939_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44526-5
Online ISBN: 978-3-540-44528-9
eBook Packages: Computer ScienceComputer Science (R0)