[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

What Is the Region Occupied by a Set of Points?

  • Conference paper
Geographic Information Science (GIScience 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4197))

Included in the following conference series:

  • 1803 Accesses

Abstract

There are many situations in GIScience where it would be useful to be able to assign a region to characterize the space occupied by a set of points. Such a region should represent the location or configuration of the points as an aggregate, abstracting away from the individual points themselves. In this paper, we call such a region a ‘footprint’ for the points. We investigate and compare a number of methods for producing such footprints, with respect to nine general criteria. The discussion identifies a number of potential choices and avenues for further research. Finally, we contrast the related research already conducted in this area, highlighting differences between these existing constructs and our ‘footprints’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Berg, M., Schwarzkopf, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. van Kreveld, M.: Finding the wood by the trees. CG Tribune (1998), http://www.inria.fr/prisme/personnel/bronnimann/cgt/cgt10.ps

  4. Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient characteristic hulls (in preparation, 2006)

    Google Scholar 

  5. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)

    MATH  Google Scholar 

  6. Alani, H., Jones, C.B., Tudhope, D.: Voronoi-based region approximation for geographical information retrieval with gazetteers. International Journal of Geographical Information Science 15, 287–306 (2001)

    Article  Google Scholar 

  7. Arampatzis, A., van Kreveld, M., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M., Benkert, M., Wolff, A.: Web-based delineation of imprecise regions. In: Workshop on Geographic Information Retrieval (SIGIR 2004) (2004) (accessed July 8, 2005), http://www.geo.unizh.ch/~rsp/gir/abstracts/arampatzis.pdf

  8. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory IT-29, 551–559 (1983)

    Article  MathSciNet  Google Scholar 

  9. Traka, M., Tziritas, G.: Panoramic view construction. Signal Processing: Image Communication 18, 465–481 (2003)

    Google Scholar 

  10. Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–260 (2001)

    Google Scholar 

  11. Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications 19, 127–153 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Sklansky, J., Kibler, D.: A theory of nonuniformly digitized binary pictures. IEEE Transactions on Systems, Man, and Cybernetics 6, 637–647 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cinque, L., Lombardi, L.: Shape description and recognition by a multiresolution approach. Image and Vision Computing 13, 599–607 (1995)

    Article  Google Scholar 

  14. Borgefors, G., Nyström, I., di Baja, G.S.: Computing skeletons in three dimensions. Pattern Recognition 32, 1225–1236 (1999)

    Article  Google Scholar 

  15. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  16. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16, 3 (2005)

    Article  Google Scholar 

  17. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology 18, 259–278 (1969)

    Article  Google Scholar 

  18. Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galton, A., Duckham, M. (2006). What Is the Region Occupied by a Set of Points?. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds) Geographic Information Science. GIScience 2006. Lecture Notes in Computer Science, vol 4197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863939_6

Download citation

  • DOI: https://doi.org/10.1007/11863939_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44526-5

  • Online ISBN: 978-3-540-44528-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics