[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Low-Cost Laser Range Scanner and Fast Surface Registration Approach

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

In the last twenty years many approaches for contact-free measurement techniques for object surfaces and approaches for 3d object reconstruction have been proposed; but often they still require complex and expensive equipment. Not least due to the rapidly increasing number of efficient 3d hard- and software system components, alternative low-cost solutions are in great demand. We propose such a low-cost system for 3d data acquisition and fast pairwise surface registration. The only hardware requirements are a simple commercial hand-held laser and a standard grayscale camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pipitone, F.J., Marshall, T.G.: A wide-field scanning triangulation rangefinder for machine vision. International Journal of Robotics Research 2(1), 39–49 (1983)

    Article  Google Scholar 

  2. Hall, E.L., Tio, J.B.K., MCPherson, C.A.: Measuring curved surfaces for robot vision. Computer 15(12), 42–54 (1982)

    Article  Google Scholar 

  3. Blais, F.: Review of 20 years range sensor development. Journal of Electronic Imaging 13(1) (2004)

    Google Scholar 

  4. Zagorchev, L., Goshtasby, A.: A paintbrush laser range scanner. Computer Vision and Image Understanding 101, 65–85 (2006)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2), 239–258 (1992)

    Article  Google Scholar 

  6. Krebs, B., Sieverding, P., Korn, B.: A fuzzy ICP algorithm for 3D free form object recognition. In: International Conf. on Pattern Recognition, pp. 539–543 (1996)

    Google Scholar 

  7. Dalley, G., Flynn, P.: Pair-wise range image registration: a study in outlier classification. Comput. Vis. Image Underst. 87(1-3), 104–115 (2002)

    Article  MATH  Google Scholar 

  8. Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3D object recognition. International Journal of Computer Vision 25(1), 63–85 (1997)

    Article  Google Scholar 

  9. Papaioannou, G., Theoharis, T.: Fast fragment assemblage using boundary line and surface matching. In: IEEE/CVPR Workshop on Applicat. of Computer Vision in Archaeology (1999)

    Google Scholar 

  10. Krebs, B., Korn, B., Wahl, F.M.: Plausibilistic preprocessing of sparse range images. In: Proc. of the 8th Int. Conf. on Image Anal. and Processing, pp. 361–366 (1995)

    Google Scholar 

  11. Johnson, A., Hebert, M.: Recognizing objects by matching oriented points. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 684–689 (1997)

    Google Scholar 

  12. Schön, N., Häusler, G.: Automatic coarse registration of 3D surfaces. In: Vision, Modeling, and Visualization 2005 (2005)

    Google Scholar 

  13. Barequet, G., Sharir, M.: Partial surface matching by using directed footprints. In: 12th Annual Symposium on Computational Geometry, pp. 409–410 (1996)

    Google Scholar 

  14. Silva, L., Bellon, O.R.P., Boyer, K.L.: Robust Range Image Registration Using Genetic Algorithms and the Surface Interpenetration Measure. Machine Perception Artificial Intelligence, vol. 60. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  15. Winkelbach, S., Rilk, M., Schönfelder, C., Wahl, F.M.: Fast Random Sample Matching of 3d Fragments. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 129–136. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  17. Tsai, R.Y.: An efficient and accurate camera calibration technique for 3d machine vision. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 364–374 (1986)

    Google Scholar 

  18. Wahl, E., Hillenbrand, U., Hirzinger, G.: Surflet-pair-relation histograms: A statistical 3d-shape representation for rapid classification. In: Proc. 4th International Conf. on 3-D Digital Imaging and Modeling (3DIM 2003), pp. 474–481 (2003)

    Google Scholar 

  19. Weisstein, E.W.: Birthday Attack (From MathWorld–A Wolfram Web Resource), http://mathworld.wolfram.com/BirthdayAttack.html

  20. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. on Math. Software 3(3), 209–226 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Winkelbach, S., Molkenstruck, S., Wahl, F.M. (2006). Low-Cost Laser Range Scanner and Fast Surface Registration Approach. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_72

Download citation

  • DOI: https://doi.org/10.1007/11861898_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics