[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Bayesian Algorithm for Reconstructing Two-Component Signaling Networks

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

  • 906 Accesses

Abstract

We present an algorithm, based on a Bayesian network model, for ab initio prediction of signaling interactions in bacterial two-component systems. The algorithm uses a large training set of known interacting kinase/receiver pairs to build a probabilistic model of dependency between the amino acid sequences of the two proteins and uses this model to predict which pairs interact. We show that the algorithm can accurately reconstruct cognate kinase/receiver pairs across all sequenced bacteria. We also present predictions of interacting orphan kinase/receiver pairs in the bacterium Caulobacter crescentus and show that these significantly overlap with experimentally observed interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stock, A., Robinson, V., Goudreau, P.: Two-component signal transduction. Annu.Rev.Biochem. 69, 183–215 (2000)

    Article  Google Scholar 

  2. Grebe, T., Stock, J.: The histidine protein kinase superfamily. Advances in Microbial. Physiology 41, 139–227 (1999)

    Article  Google Scholar 

  3. Ausmees, N., Jacobs-Wagner, C.: Spatial and temporal control of differentiation and cell cycle progression in Caulobacter Crescentus. Annu.Rev.Microbiol. 57, 225–247 (2003)

    Article  Google Scholar 

  4. Ramani, A., Marcotte, E.: Exploiting the co-evolution of interacting proteins to discover interaction specificity. J. Mol. Biol. 327, 273–284 (2003)

    Article  Google Scholar 

  5. Bateman, A., Coin, L., Durbin, R., Finn, R., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E., Studholme, D., Yeats, C., Eddy, S.: The Pfam protein families database. Nucl. Acids Res. 32, D138–D141 (2004)

    Article  Google Scholar 

  6. Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S.: Probcons: Probabilistic consistency-based multiple sequence alignment. Genome Research 15, 330–340 (2005)

    Article  Google Scholar 

  7. van Nimwegen, E., Zavolan, M., Rajewsky, N., Siggia, E.D.: Probabilistic clustering of sequences: Inferring new bacterial regulons by comparative genomics. Proc. Natl. Acad. Sci. USA 99, 7323–7328 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory IT-14, 462–467 (1968)

    Article  MATH  Google Scholar 

  9. Skerker, J., Laub, M.: Cell-cycle progression and the generation of asymmetry in Caulobacter Crescentus. Nature Reviews Microbiology 3, 325–337 (2004)

    Article  Google Scholar 

  10. Ohta, N., Newton, A.: The core dimerization domains of histidine kinases contain specificity for the cognate response regulator. Journal of Bacteriology 185, 4424–4431 (2003)

    Article  Google Scholar 

  11. Skerker, J., Prasol, M., Perchuk, B., Biondi, E., Laub, M.: Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a systems-level analysis. PLOS Biol. 3, 334 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burger, L., van Nimwegen, E. (2006). A Bayesian Algorithm for Reconstructing Two-Component Signaling Networks. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_5

Download citation

  • DOI: https://doi.org/10.1007/11851561_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics