[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparison on Textured Motion Classification

  • Conference paper
Multimedia Content Representation, Classification and Security (MRCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4105))

  • 1447 Accesses

Abstract

Textured motion – generally known as dynamic or temporal texture – analysis, classification, synthesis, segmentation and recognition is popular research areas in several fields such as computer vision, robotics, animation, multimedia databases etc. In the literature, several algorithms are proposed to characterize these textured motions such as stochastic and deterministic algorithms. However, there is no study which compares the performances of these algorithms. In this paper, we carry out a complete comparison study. Also, improvements to deterministic methods are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doretto, G.: Dynamic Texture Modeling., M.S. Thesis, University of California (2002)

    Google Scholar 

  2. Cock, K.D., Moor, B.D.: Subspace angles between linear stochastic models. In: Proceedings of 39th IEEE Conference on Decision and Control, pp. 1561–1566 (2000)

    Google Scholar 

  3. Martin, R.J.: A Metric for ARMA Processes. IEEE Transactions On Signal Processing 48(4), 1164–1170 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Peteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 223–230. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chetverikov, D.: Pattern Regularity as a Visual Key. Image and Vision Computing 18, 975–985 (2000)

    Article  Google Scholar 

  6. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  7. Sookocheff, K.B.: Computing Texture Regularity. Image Processing and Computer Vision (2004)

    Google Scholar 

  8. Fazekas, S., Chetverikov, D.: Normal Versus Complete Flow In Dynamic Texture Recognition: A Comparative Study. In: 4th International Workshop on Texture Analysis and Synthesis (2005)

    Google Scholar 

  9. Chetverikov, D., Hanbury, A.: Finding Defects in Texture Using Regularity and Local Orientation. Pattern Recognition 35, 203–218 (2002)

    Article  Google Scholar 

  10. Otsuka, K., Horikoshi, T., Suzuki, S., Fujii, M.: Feature Extraction of Temporal Texture Based On Spatiotemporal Motion Trajectory. In: Int. Conf. on Pattern Recog. ICPR 1998, vol. 2, pp. 1047–1051 (1998)

    Google Scholar 

  11. MIT Temporal Texture Database (last visited on November 2005), http://vismod.media.mit.edu/pub/szummer/temporal-texture/raw/

  12. Brodatz Texture Database (last visited on November 2005), http://www.ux.his.no/~tranden/brodatz.html

  13. Nelson, R.C., Polana, R.: Qualitative Recognition of Motion using Temporal Texture. CVGIP: Image Understanding 56, 78–89 (1992)

    Article  MATH  Google Scholar 

  14. Wildes, R.P., Bergen, J.R.: Qualitative Spatiotemporal Analysis using an Oriented Energy Representation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 768–784. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Smith, J.R., Lin, C.-Y., Naphade, M.: Video Texture Indexing using Spatiotemporal Wavelets. In: IEEE Int. Conf. on Image Processing, ICIP 2002, vol. 2, pp. 437–440 (2002)

    Google Scholar 

  16. http://visual.ipan.sztaki.hu/regulweb/node5.html , (last visited on November 2005)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Öztekin, K., Akar, G.B. (2006). A Comparison on Textured Motion Classification. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_95

Download citation

  • DOI: https://doi.org/10.1007/11848035_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39392-4

  • Online ISBN: 978-3-540-39393-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics