Abstract
Textured motion – generally known as dynamic or temporal texture – analysis, classification, synthesis, segmentation and recognition is popular research areas in several fields such as computer vision, robotics, animation, multimedia databases etc. In the literature, several algorithms are proposed to characterize these textured motions such as stochastic and deterministic algorithms. However, there is no study which compares the performances of these algorithms. In this paper, we carry out a complete comparison study. Also, improvements to deterministic methods are given.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Doretto, G.: Dynamic Texture Modeling., M.S. Thesis, University of California (2002)
Cock, K.D., Moor, B.D.: Subspace angles between linear stochastic models. In: Proceedings of 39th IEEE Conference on Decision and Control, pp. 1561–1566 (2000)
Martin, R.J.: A Metric for ARMA Processes. IEEE Transactions On Signal Processing 48(4), 1164–1170 (2000)
Peteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 223–230. Springer, Heidelberg (2005)
Chetverikov, D.: Pattern Regularity as a Visual Key. Image and Vision Computing 18, 975–985 (2000)
Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)
Sookocheff, K.B.: Computing Texture Regularity. Image Processing and Computer Vision (2004)
Fazekas, S., Chetverikov, D.: Normal Versus Complete Flow In Dynamic Texture Recognition: A Comparative Study. In: 4th International Workshop on Texture Analysis and Synthesis (2005)
Chetverikov, D., Hanbury, A.: Finding Defects in Texture Using Regularity and Local Orientation. Pattern Recognition 35, 203–218 (2002)
Otsuka, K., Horikoshi, T., Suzuki, S., Fujii, M.: Feature Extraction of Temporal Texture Based On Spatiotemporal Motion Trajectory. In: Int. Conf. on Pattern Recog. ICPR 1998, vol. 2, pp. 1047–1051 (1998)
MIT Temporal Texture Database (last visited on November 2005), http://vismod.media.mit.edu/pub/szummer/temporal-texture/raw/
Brodatz Texture Database (last visited on November 2005), http://www.ux.his.no/~tranden/brodatz.html
Nelson, R.C., Polana, R.: Qualitative Recognition of Motion using Temporal Texture. CVGIP: Image Understanding 56, 78–89 (1992)
Wildes, R.P., Bergen, J.R.: Qualitative Spatiotemporal Analysis using an Oriented Energy Representation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 768–784. Springer, Heidelberg (2000)
Smith, J.R., Lin, C.-Y., Naphade, M.: Video Texture Indexing using Spatiotemporal Wavelets. In: IEEE Int. Conf. on Image Processing, ICIP 2002, vol. 2, pp. 437–440 (2002)
http://visual.ipan.sztaki.hu/regulweb/node5.html , (last visited on November 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Öztekin, K., Akar, G.B. (2006). A Comparison on Textured Motion Classification. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_95
Download citation
DOI: https://doi.org/10.1007/11848035_95
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39392-4
Online ISBN: 978-3-540-39393-1
eBook Packages: Computer ScienceComputer Science (R0)