[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model-Aided Data Collecting for Wireless Sensor Networks

  • Conference paper
High Performance Computing and Communications (HPCC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4208))

Abstract

In this paper, we address the problem of collecting data from sensor nodes using a model-aided approach. In our approach, a model is maintained by a node and a replica of the model is maintained the base station. The base station uses the replica model to estimate the actual measurement data of the sensor node in usual time, and an actual measurement datum is sent to the base station only when the error of the model’s corresponding estimation exceeds allowable error bound. In such a way, energy can be saved by reducing the transmission of actual measurement data. Experimental results show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey. Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Horton, M., Culler, D., PIster, K., Hill, J., Szewczyk, R., Woo, A.: MICA, The Commercialization of Microsensor Motes. Sensors 19(4), 40–48 (2002)

    Google Scholar 

  3. Krishnamachari, B., Estrin, D., Wicker, S.: The Impact of Data Aggregation in Wireless Sensor Networks. In: DEBS (2002)

    Google Scholar 

  4. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation service for ad hoc sensor networks. In: OSDI (2002)

    Google Scholar 

  5. Yao, Y., Gehrke, J.: Query processing in sensor networks. In: CIDR (2003)

    Google Scholar 

  6. Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., Heidemann, J.: An Evaluation of Multi-resolution Search and Storage in Resource-constrained Sensor Networks. In: ACM SenSys (2003)

    Google Scholar 

  7. Chou, J., Petrovic, D., Ramchandran, K.: A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks. In: INFOCOM (2003)

    Google Scholar 

  8. Babcock, B., Olston, C.: Distributed Top-K Monitoring. In: ACM SIGMOD (2003)

    Google Scholar 

  9. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical In-Network Data Aggregation with Quality Guarantees. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 658–675. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate Data Collection in Sensor Networks using Probabilistic Models. In: ICDE 2006 (2006)

    Google Scholar 

  11. Jin, C., Qian, Z., Chen, L., Wang, X.: Ambulatory blood pressure monitoring in secondary hypertension. Chinese Journal of Cardiology 27(3), 50–53 (1999)

    Google Scholar 

  12. Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks Cole publishing company (December 2000)

    Google Scholar 

  13. Hughes-Hallett, D., Gleason, A.M., Lock, P.F., Flath, D.E., et al.: Applied Calculus. Wiley, Chichester (2002)

    Google Scholar 

  14. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: MOBICOM 2000 (2000)

    Google Scholar 

  15. Akyildiz, I.F., Vuran, M.C., Akan, O.B.: On Exploiting Spatial and Temporal Correlation in Wireless Sensor Networks. In: WiOpt 2004 (2004)

    Google Scholar 

  16. Crossbow, Inc. Wireless sensor networks, http://www.xbow.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, C., Li, M., Wu, MY. (2006). Model-Aided Data Collecting for Wireless Sensor Networks. In: Gerndt, M., Kranzlmüller, D. (eds) High Performance Computing and Communications. HPCC 2006. Lecture Notes in Computer Science, vol 4208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847366_71

Download citation

  • DOI: https://doi.org/10.1007/11847366_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39368-9

  • Online ISBN: 978-3-540-39372-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics