Abstract
In this paper, we address the problem of collecting data from sensor nodes using a model-aided approach. In our approach, a model is maintained by a node and a replica of the model is maintained the base station. The base station uses the replica model to estimate the actual measurement data of the sensor node in usual time, and an actual measurement datum is sent to the base station only when the error of the model’s corresponding estimation exceeds allowable error bound. In such a way, energy can be saved by reducing the transmission of actual measurement data. Experimental results show the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey. Computer Networks 38(4), 393–422 (2002)
Horton, M., Culler, D., PIster, K., Hill, J., Szewczyk, R., Woo, A.: MICA, The Commercialization of Microsensor Motes. Sensors 19(4), 40–48 (2002)
Krishnamachari, B., Estrin, D., Wicker, S.: The Impact of Data Aggregation in Wireless Sensor Networks. In: DEBS (2002)
Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation service for ad hoc sensor networks. In: OSDI (2002)
Yao, Y., Gehrke, J.: Query processing in sensor networks. In: CIDR (2003)
Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., Heidemann, J.: An Evaluation of Multi-resolution Search and Storage in Resource-constrained Sensor Networks. In: ACM SenSys (2003)
Chou, J., Petrovic, D., Ramchandran, K.: A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks. In: INFOCOM (2003)
Babcock, B., Olston, C.: Distributed Top-K Monitoring. In: ACM SIGMOD (2003)
Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical In-Network Data Aggregation with Quality Guarantees. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 658–675. Springer, Heidelberg (2004)
Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate Data Collection in Sensor Networks using Probabilistic Models. In: ICDE 2006 (2006)
Jin, C., Qian, Z., Chen, L., Wang, X.: Ambulatory blood pressure monitoring in secondary hypertension. Chinese Journal of Cardiology 27(3), 50–53 (1999)
Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks Cole publishing company (December 2000)
Hughes-Hallett, D., Gleason, A.M., Lock, P.F., Flath, D.E., et al.: Applied Calculus. Wiley, Chichester (2002)
Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: MOBICOM 2000 (2000)
Akyildiz, I.F., Vuran, M.C., Akan, O.B.: On Exploiting Spatial and Temporal Correlation in Wireless Sensor Networks. In: WiOpt 2004 (2004)
Crossbow, Inc. Wireless sensor networks, http://www.xbow.com
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, C., Li, M., Wu, MY. (2006). Model-Aided Data Collecting for Wireless Sensor Networks. In: Gerndt, M., Kranzlmüller, D. (eds) High Performance Computing and Communications. HPCC 2006. Lecture Notes in Computer Science, vol 4208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847366_71
Download citation
DOI: https://doi.org/10.1007/11847366_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39368-9
Online ISBN: 978-3-540-39372-6
eBook Packages: Computer ScienceComputer Science (R0)