Abstract
A strategy for solving an optimisation problem with a large number of objectives by transforming the original objective vector into a two-objective vector during survival selection is presented. The transformed objectives, referred to as preference objectives, consist of a winning score and a vicinity index. The winning score, a maximisation criterion, describes the difference of the number of superior and inferior objectives between two solutions. The minimisation vicinity index describes the level of solution clustering around a search location, particularly the best value of each individual objective, is used to encourage the results to spread throughout the Pareto front. With this strategy, a new multi-objective algorithm, the compressed-objective genetic algorithm (COGA), is introduced. COGA is subsequently benchmarked against a non-dominated sorting genetic algorithm II (NSGA-II) and an improved strength Pareto genetic algorithm (SPEA-II) in six scalable DTLZ benchmark problems with three to six objectives. The results reveal that the proposed strategy plays a crucial role in the generation of a superior solution set compared to the other two techniques in terms of the solution set coverage and the closeness to the true Pareto front. Furthermore, the spacing of COGA solutions is very similar to that of SPEA-II solutions. Overall, the functionality of the multi-objective evolutionary algorithm (MOEA) with preference objectives is effectively demonstrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched Pareto genetic algorithm. IlliGAL Report No. 93005, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, IL (1993)
Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part 1: A unified formulation. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 28(1), 26–37 (1998)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Deb, K., Goel, T.: Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 67–81. Springer, Heidelberg (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T. (eds.) Evolutionary Methods for Design, Optimisation and Control, CIMNE, Barcelona, Spain, pp. 95–100 (2002)
Chaiyaratana, N., Piroonratana, T., Sangkawelert, N.: Effects of diversity control in single-objective and multi-objective genetic algorithms. J. Heuristics (in press, 2007)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, L.C., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, London (2005)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)
Purshouse, R.C., Fleming, P.J.: Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maneeratana, K., Boonlong, K., Chaiyaratana, N. (2006). Compressed-Objective Genetic Algorithm. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_48
Download citation
DOI: https://doi.org/10.1007/11844297_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)