[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Balancing Applied to Maximum Network Flow Problems

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

Abstract

We explore balancing as a definitional and algorithmic tool for finding minimum cuts and maximum flows in ordinary and parametric networks. We show that a standard monotonic parametric maximum flow problem can be formulated as a problem of computing a particular maximum flow that is balanced in an appropriate sense. We present a divide-and-conquer algorithm to compute such a balanced flow in a logarithmic number of ordinary maximum-flow computations. For the special case of a bipartite network, we present two simple, local algorithms for computing a balanced flow. The local balancing idea becomes even simpler when applied to the ordinary maximum flow problem. For this problem, we present a round-robin arc-balancing algorithm that computes a maximum flow on an n-vertex, m-arc network with integer arc capacities of at most U in O(n 2 m log(nU)) time. Although this algorithm is slower by at least a factor of n than other known algorithms, it is extremely simple and well-suited to parallel and distributed implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B., Tarjan, R.E.: Improved time bounds for the maximum flow problem. SIAM Journal on Computing 18, 939–954 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Awerbuch, B., Leighton, F.T.: A simple local-control approximation algorithm for multicommodity flow. In: Proc. FOCS, pp. 459–468. IEEE, Los Alamitos (1993)

    Google Scholar 

  3. Awerbuch, B., Leighton, T.: Improved approximation algorithms for the multi-commodity flow problem and local competitive routing in dynamic networks. In: STOC, pp. 487–496 (1994)

    Google Scholar 

  4. Balinski, M.L.: On a selection problem. Management Science 17(3), 230–231 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for the maximum flow problem. Algorithmica 19(4), 390–410 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  8. Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record segmentation in shared databases. Journal of the ACM 23(4), 619–635 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees. Internet Mathematics 1(4), 385–408 (2005)

    Article  MathSciNet  Google Scholar 

  10. Fujishige, S.: A maximum flow algorithm using MA ordering. Operations Research Letters 31, 176–178 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Computing 18(1), 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldberg, A.: Private communication (2006)

    Google Scholar 

  13. Goldberg, A., Tarjan, R.: A new approach to the maximum flow problem. Journal of the ACM 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. Journal of the ACM 45(5), 783–797 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gusfield, D., Martel, C.: A fast algorithm for the generalized parametric minimum cut problem and applications. Algorithmica 7, 499–519 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hochbaum, D.: Selection, provisioning, shared fixed costs, maximum closure, and implications on algorithmic methods today. Management Science 50(6), 709–723 (2004)

    Article  Google Scholar 

  17. Mamer, J., Smith, S.: Optimizing field repair kits based on job completion rate. Management Science 28(11), 1328–1333 (1982)

    Article  MATH  Google Scholar 

  18. Matsuoka, Y., Fujishige, S.: Practical efficiency of maximum flow algorithms using MA orderings and preflows. J. Oper. Res. Soc. of Japan 48, 297–307 (2005)

    MATH  MathSciNet  Google Scholar 

  19. McCormick, S.T.: Fast algorithms for parametric scheduling come from extensions to parametric maximum flow. Operations Research 47, 744–756 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, i302–i310 (2005)

    Article  Google Scholar 

  21. Rhys, J.M.W.: A selection problem of shared fixed costs and network flows. Management Science 17(3), 200–207 (1970)

    Article  MATH  Google Scholar 

  22. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(1), 362–391 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stone, H.: Critical load factors in two-processor distributed systems. IEEE Trans. Software Engineering 4, 254–258 (1978)

    Article  Google Scholar 

  24. Zhang, B., Ward, J., Feng, Q.: A simultaneous parametric maximum flow algorithm for finding the complete chain of solutions. Technical report, HP Labs (2004), http://www.hpl.hp.com/techreports/2004/HPL-2004-189.html

  25. Zhang, B., Ward, J., Feng, Q.: Simultaneous parametric maximum flow algorithm with vertex balancing. Technical report, HP Labs (2005), http://www.hpl.hp.com/techreports/2005/HPL-2005-121.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tarjan, R., Ward, J., Zhang, B., Zhou, Y., Mao, J. (2006). Balancing Applied to Maximum Network Flow Problems. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_55

Download citation

  • DOI: https://doi.org/10.1007/11841036_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics